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are not equally interested in all states. One alternative, known
as the contractor renormalization (CORE) mapping [24], is to
make the small-space ground state |0̃⟩ proportional to P |0⟩,
the projection of the full ground state, and then construct
the other |k̃⟩ from the set P |k⟩ through Graham-Schmidt
orthogonalization. But in fact any unitary transformation of
the |k̃⟩’s generated by the Lee-Suzuki procedure defines a
valid mapping. In our case, we can generate an arbitrary
time-reversal-preserving transformation by rotating the two
small-space 0+ states in A = 6 by an arbitrary angle α and the
two 2+ states by another angle β. We will try to see whether
there are values of these angles that are particularly suited for
double-β decay.

III. RESULTS

We now test the performance of our Lee-Suzuki effective
operator in heavier nuclei. Figure 1 presents our results for
the decays 7,8,10He→7,8,10Be when we use the SRG-evolved
chiral N3LO ( [15]) interaction in a 6h̄ω full space. The black
(solid) curves in each of the panels denote the full Nmax =
6 0νββ distributions C(r). These curves are what the effective
operators are supposed to reproduce. The red (dashed) curves
denote the results obtained with the bare 0νββ operator in the p
shell, with wave functions produced by the effective p-shell in-
teraction, which in turn comes from the Lee-Suzuki procedure
for A = 5 and 6 discussed above. The blue (dot-dashed) curves
are the results with the effective operator, used in conjunction
with the wave functions from the same effective interaction.

The use of the effective decay operator clearly improves
the agreement between the p-shell C(r) and the full one in
all three panels. One problem, however, is that C(r) is not
itself measurable; its integral is what we want. And it turns out
that oscillations can make apparent poor agreement between
curves much better in the integral, and good agreement worse.
Table I compares the matrix elements themselves for the three
decays represented by the figure.

The effective operator produces a clear improvement in
the integrated matrix element in A = 7 and (particularly) 8,
but by A = 10 the bare operator does pretty well and the
effective operator not as well. The reason is apparent from the
bottom panel of Fig. 1: the effective-operator curve, while a
better approximation than the bare curve, is not as good when
integrated because because it is above the full curve until about
r ∼ 4 fm. The bare curve strays from the full curve at both the
peak and dip but in opposite directions; it thus supplies a good
approximation when integrated.

Is this behavior a fluke? Does it depend on the shell-model
interaction or the size of the full model space? To address
these questions we repeated our calculations with different
interactions and model spaces. In A = 7, the effective operator
is always a decided improvement but in A = 8 and 10 the
results are more ambiguous. Figure 2 and Table II present
results of calculations in a Nmax = 8 space with the CD-Bonn
interaction, conditioned as described in section II for A = 8
and 10. (We do not show A = 7, and the size of the problem in
10Be limits us to Nmax = 6 in A = 10.) Once again the effective
operator appears to be an improvement in both cases, but now,
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FIG. 1. (Color online) The curves C(r), the integrals of which
give the matrix elements for neutrinoless double-β decay. The solid
(black) lines are the results of the full (Nmax = 6) calculations with the
SRG-evolved N3LO potential, the dashed (red) lines are the results of
the p-shell calculation with the effective two-body Hamiltonian and
the bare decay operator, and the dot-dashed (blue) lines are the results
with the effective Hamiltonian and the effective decay operator. The
top panel is for the decay 7He → 7Be, the middle panel for 8He
→ 8Be, and the bottom panel for 10He → 10Be.

as Table II shows, the effective-operator curve for A = 8 can-
cels itself too much in the integral. And in A = 10 the effective
operator does better than the figure indicates it should.

One might expect the procedure to work better when the
full model space is smaller, and/or when the full results differ

TABLE I. Matrix elements Mf i produced by the distributions
C(r) in Fig. 1.

7 8 10

full 1.76 0.48 0.79
bare 1.49 0.18 0.91
effective 1.90 0.59 1.23
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²    All nucleons are active 
²    Exact Pauli principle 
²    Realistic inter-nucleon interactions 

²  Accurate description of  NN (and 3N) data 

²    Controllable approximations 
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from chiral perturbation theory 
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–  short- and medium range correlations 
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 Calculations with chiral 3N: SRG renormalization needed 
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correlations 
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•  Continuous transformation driving Hamiltonian to band-diagonal form 
with respect to a chosen basis 

•  Unitary transformation 

•  Setting                      with Hermitian 

•  Customary choice in nuclear physics            …kinetic energy operator 
–  band-diagonal in momentum space plane-wave basis 
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Similarity Renormalization Group (SRG) evolution 
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Figure 25: IT-NCSM ground-state energies for 4He, 6Li, 12C and 16O as function of Nmax for the three types of
Hamiltonians (see column headings) for a range of flow parameters: α = 0.04 fm4 (•), 0.05 fm4 ( !), 0.0625 fm4
("), 0.08 fm4 (!), and 0.16 fm4 (★). Error bars indicate the uncertainties of the threshold extrapolations. The
bars at the right-hand-side of each panel indicate the results of exponential extrapolations of the individual
Nmax-sequences. For further details see Ref. [119].

body HO basis truncation. A smooth extrapolation of eigenenergies then becomes much more straightforward.
Second, the SRG dependence on the evolution parameter λ (or α) can be utilized as a gauge of the unitarity or a
violation of the unitarity by the transformation. In another important development, a transformation from NNN
Jacobi matrix elements to a JT -coupled representation with a highly efficient storage scheme was proposed
and implemented [119], which allows us to handle NNN matrix-element sets of unprecedented size in the
Slater-determinant basis calculations. While the previous scheme [105, 106] was limited to the maximum of
Nmax=8 basis size, the new scheme, based on the expressions derived in Ref. [106], but with a new, more
clever factorization, is applicable to Nmax = 14 spaces and beyond. Finally, the importance-truncated NCSM
approach has been introduced [184, 185]. This approach, further discussed in Subsection 5.2, uses many-
body PT to select a subset of basis states of the Nmax!Ω space prior to the Hamiltonian diagonalization. While
the full-space calculations with the NNN interactions for heavy p-shell nuclei are limited to Nmax=8, the
importance-truncated NCSM approach allows us to reach, e.g., Nmax=12 for 16O [119].

IT-NCSM calculations of g.s. energies for 4He, 6Li, 12C and 16O are presented in Fig. 25. The SRG
transformed chiral NN+NNN interactions were used. In particular, the chiral NN at N3LO [20, 21] and the
chiral NNN at N2LO in the local form [134] with low-energy constants determined from the triton binding
energy and β-decay half-life [133] as described in Subsection 4.1. In order to disentangle the effects of the
initial and the SRG-induced NNN contributions, three different Hamiltonians were considered. (1) NN only:
starting from the chiral NN interaction only the SRG-evolved NN contributions are kept. (2) NN+NNN-
induced: starting from the chiral NN interaction the SRG-evolved NN and the induced NNN terms are kept.
(3) NN+NNN-full: starting from the chiral NN+NNN interaction all SRG-evolved NN and NNN terms are
kept. For each Hamiltonian the dependence of the g.s. energies was assessed on the flow-parameter α. Five
values were used, α = 0.04 fm4, 0.05 fm4, 0.0625 fm4, 0.08 fm4, and 0.16 fm4, which correspond to momentum
scales λ = α−1/4 = 2.24 fm−1, 2.11 fm−1, 2 fm−1, 1.88 fm−1, and 1.58 fm−1, respectively. For extrapolations to
infinite model space, Nmax → ∞, simple exponential fits based on the last 3 or 4 data points were employed.
The 4He and 6Li results reproduced here from the original Ref. [119] agree completetely with the previously
published full space NCSM calculations with the same SRG evolved chiral Hamiltonians [117, 118]. The
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Background: The β decays of 3H and 6He can play an important role in testing nuclear wave-function calculations
and fixing low-energy constants in effective-field theory approaches. However, there exists a large discrepancy
between previous measurements of the 6He half-life.
Purpose: Our measurement aims at resolving this long-standing discrepancy in the 6He half-life and providing
a reliable f t value and Gamow-Teller matrix element for comparison with theoretical ab initio calculations.
Method: We measured the 6He half-life by counting the β-decay electrons with two scintillator detectors
operating in coincidence.
Results: The measured 6He half-life is 806.89 ± 0.11stat

+0.23
−0.19syst ms corresponding to a relative precision of

3 × 10−4. Calculating the statistical rate function we determined the f t value to be 803.04+0.26
−0.23 s.

Conclusions: Our result resolves the previous discrepancy by providing a higher-precision result with careful
analysis of potential systematic uncertainties. The result provides a reliable basis for future precision comparisons
with ab initio calculations.

DOI: 10.1103/PhysRevC.86.035506 PACS number(s): 23.40.−s, 27.20.+n

I. INTRODUCTION

Precision measurements of electroweak processes in light
nuclei can provide important tests of our understanding
of electroweak interactions in the nuclear medium. Many
interesting problems—ranging from solar fusion to neutrino
interactions and muon and pion capture processes—depend
on their correct modeling and calculation [1]. Recent progress
in numerical techniques enables precise, ab initio calculations
of wave functions for light nuclei starting with the nucleon-
nucleon interaction and without assuming a frozen core of
inactive particles [2–4].

The allowed weak nuclear decays driven by the ax-
ial current—called Gamow-Teller decays—have historically
played an important role in testing wave functions because
the main operator has a simple spin and isospin structure
and does not possess any radial component. Systematic
comparisons using shell-model wave functions showed that
in order to reproduce observations the value for the weak axial
coupling constant, gA, had to be “quenched.” For the sd-shell
nuclei this difference amounted to about 30% with respect
to that measured in free neutron decay [5,6]. In addition,
when charge-exchange reactions were used to explore a large
fraction of the Gamow-Teller strength sum rule, evidence also

*knechta@uw.edu
†Present address: Department of Physics, Old Dominion University,

Norfolk, VA 23529, USA.
‡Present address: Department of Physics and Astronomy and

National Superconducting Cyclotron Laboratory, Michigan State
University, East Lansing, MI 48824, USA.

pointed to “quenching of the Gamow-Teller strength” [7,8].
However, the origin of the quenching is not completely clear.
References [7,9,10] showed that, as shell-model calculations
are allowed to introduce higher and higher excitations, the
need to renormalize operators disappears. But it has also
been pointed out that meson-exchange currents (mediating,
for example, nucleon-delta excitations) could be responsible
for at least some of the apparent quenching of strength
[11,12].

The decays of 3H and of 6He are special because these
systems are light enough that the corresponding ab initio
calculations can be performed with precision. In particu-
lar, Refs. [4,13] and later [14,15] have shown that, us-
ing the case of 3H to fix nucleon-delta excitations, the
f t value for 6He can be calculated to within a few percent.
These two decays, then, can play an important role in testing
the accuracy of nuclear wave-function calculations [4,13,14]
or, as suggested in Ref. [15], in fixing low-energy constants in
effective-field-theory calculations [1].

In this paper we present a more detailed description of the
high-precision experimental determination of the half-life and
f t value for 6He published in Ref. [16]. Except for a small
branch of ∼10−6 [17] the β decay of 6He proceeds 100% to
the ground state of 6Li with an end point of 3.5 MeV. The 6He
half-life was previously determined by several works compiled
in Table I and shown in Fig. 1.

As can be seen, the values spread over a range much wider
than expected from the claimed uncertainties, which makes the
currently reported average and precision of 806.7 ± 1.5 ms
[36] unreliable. Averaging the five values shown in the
inset in Fig. 1 with uncertainties below 1% and scaling the
uncertainty by the square root of the χ2 per degrees of
freedom (DOF)—as advised by the Particle Data Group in

035506-10556-2813/2012/86(3)/035506(10) ©2012 American Physical Society
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Precision measurements of electroweak processes in light
nuclei can provide important tests of our understanding
of electroweak interactions in the nuclear medium. Many
interesting problems—ranging from solar fusion to neutrino
interactions and muon and pion capture processes—depend
on their correct modeling and calculation [1]. Recent progress
in numerical techniques enables precise, ab initio calculations
of wave functions for light nuclei starting with the nucleon-
nucleon interaction and without assuming a frozen core of
inactive particles [2–4].
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for example, nucleon-delta excitations) could be responsible
for at least some of the apparent quenching of strength
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These two decays, then, can play an important role in testing
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the ground state of 6Li with an end point of 3.5 MeV. The 6He
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than expected from the claimed uncertainties, which makes the
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nucleon interaction and without assuming a frozen core of
inactive particles [2–4].

The allowed weak nuclear decays driven by the ax-
ial current—called Gamow-Teller decays—have historically
played an important role in testing wave functions because
the main operator has a simple spin and isospin structure
and does not possess any radial component. Systematic
comparisons using shell-model wave functions showed that
in order to reproduce observations the value for the weak axial
coupling constant, gA, had to be “quenched.” For the sd-shell
nuclei this difference amounted to about 30% with respect
to that measured in free neutron decay [5,6]. In addition,
when charge-exchange reactions were used to explore a large
fraction of the Gamow-Teller strength sum rule, evidence also
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pointed to “quenching of the Gamow-Teller strength” [7,8].
However, the origin of the quenching is not completely clear.
References [7,9,10] showed that, as shell-model calculations
are allowed to introduce higher and higher excitations, the
need to renormalize operators disappears. But it has also
been pointed out that meson-exchange currents (mediating,
for example, nucleon-delta excitations) could be responsible
for at least some of the apparent quenching of strength
[11,12].

The decays of 3H and of 6He are special because these
systems are light enough that the corresponding ab initio
calculations can be performed with precision. In particu-
lar, Refs. [4,13] and later [14,15] have shown that, us-
ing the case of 3H to fix nucleon-delta excitations, the
f t value for 6He can be calculated to within a few percent.
These two decays, then, can play an important role in testing
the accuracy of nuclear wave-function calculations [4,13,14]
or, as suggested in Ref. [15], in fixing low-energy constants in
effective-field-theory calculations [1].

In this paper we present a more detailed description of the
high-precision experimental determination of the half-life and
f t value for 6He published in Ref. [16]. Except for a small
branch of ∼10−6 [17] the β decay of 6He proceeds 100% to
the ground state of 6Li with an end point of 3.5 MeV. The 6He
half-life was previously determined by several works compiled
in Table I and shown in Fig. 1.

As can be seen, the values spread over a range much wider
than expected from the claimed uncertainties, which makes the
currently reported average and precision of 806.7 ± 1.5 ms
[36] unreliable. Averaging the five values shown in the
inset in Fig. 1 with uncertainties below 1% and scaling the
uncertainty by the square root of the χ2 per degrees of
freedom (DOF)—as advised by the Particle Data Group in
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The past two decades have seen a revolution in ab initio calculations of nuclear properties. One key element
has been the development of a rigorous effective interaction theory, applying unitary transformations to soften the
nuclear Hamiltonian and hence accelerate the convergence as a function of the model space size. For consistency,
however, one ought to apply the same transformation to other operators when calculating transitions and mean
values from the eigenstates of the renormalized Hamiltonian. Working in a translationally invariant harmonic
oscillator basis for the two- and three-nucleon systems, we evolve the Hamiltonian, square radius, and total
dipole strength operators by the similarity renormalization group (SRG). The inclusion of up to three-body
matrix elements in the 4He nucleus all but completely restores the invariance of the expectation values under
the transformation. We also consider a Gaussian operator with adjustable range; short ranges have the largest
absolute renormalization when including two- and three-body induced terms, while at long ranges the induced
three-body contribution takes on increased relative importance.
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Ab initio calculations of atomic nuclei have become in-
creasingly successful in recent years, including first principles
calculation of astrophysically relevant fusion reactions [1,2],
of the anomalously long lifetime of 14C [3], and of the crucial
Hoyle state in 12C [4]. Of particular importance is the need to
include ab initio three-body forces, for example, in correctly
describing nuclear binding energies and spectra, especially the
ground state spin of p-shell nuclei [5], the lifetime of 14C [3],
and the location of the neutron drip line for oxygen [6–8],
nitrogen, and fluorine [9] isotopes.

These breakthrough discoveries have been driven by
advances in computing, in effective field theory [10–13],
in techniques for the solution of the nuclear many-body
problem, such as the no-core shell model (NCSM) [14–16]
among others [4,7,9,17–20], and in modern effective inter-
action theory [21,22]. The latter takes the form of unitary
transformations chosen to reduce the coupling between low-
and high-momentum states, which arises from the bare nuclear
interaction’s “hard core” and leads to slow convergence in the
size of the model space.

Here we focus on the similarity renormalization group
(SRG) [23–26], which has been successful when computing
nuclear properties for a variety of nuclei [20–22,27–31].
Despite the name, SRG is not related to renormalization of
any quantum field theory; within a many-body space the SRG
is a series of unitary transformations on the Hamiltonian,

Ĥs = ÛsĤs=0Û
†
s , (1)

where Ûs labels the sequence of transformations starting
with the initial Hamiltonian at s = 0. This can be rewritten
as a flow equation in s and an anti-Hermitian generator,
η̂s = (dÛs/ds)Û †

s ,

dĤs

ds
= [η̂s ,Ĥs]. (2)

The generator is commonly chosen to be [T̂ ,Ĥs], where T̂
is the kinetic energy operator. This drives the Hamiltonian
towards diagonal form in momentum space, thus decoupling
low- and high-momentum states, though other generators
have also been successful [32]. Rather than s, it is common
to use the parameter λ, with units of momentum [where
s−1 = (!λ)4/m2, and m is the nucleon mass], to measure
the spread of off-diagonal strength and keep track of the
sequence of Hamiltonians [27,28]; note that as λ decreases,
the Hamiltonian will undergo more evolution and λ = ∞
corresponds to the bare Hamiltonian.

While formally the transformed Hamiltonian should be
independent of the unitary transformation and specifically of
the SRG flow parameter, the evolution induces higher order
terms, up to A-body, into the Hamiltonian. Previous work has
suggested that stopping at three-body terms leads to energies
mostly independent of λ [28]. There is more to physics than
energy spectra, however. For instance, we want to accurately
quantify electric dipole transitions which lead to important ob-
servables, e.g., the polarization of a nucleus [33], or the radia-
tive capture 7Be(p,γ )8B, crucial to understanding the neutrino
signature of our sun [1,34]. The consistent coupling of external
fields such as photons to nuclear currents associated with the
chosen initial nuclear Hamiltonian can be complicated [35–39]
but is not the focus here. Rather, we are interested in the
consistent application of the SRG evolution in the many-
body space, which requires that operators be transformed
according to

Ôs = ÛsÔs=0Û
†
s , (3)

using the same sequence of unitary transformations that were
applied to the Hamiltonian. While this can be rewritten into a
similar form as Eq. (2), it is more computationally efficient to

0556-2813/2014/90(1)/011301(5) 011301-1 ©2014 American Physical Society

PHYSICAL REVIEW C 92, 014320 (2015)

Operator evolution for ab initio electric dipole transitions of 4He

Micah D. Schuster,1,* Sofia Quaglioni,2,† Calvin W. Johnson,1,‡ Eric D. Jurgenson,2 and Petr Navrátil3
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A goal of nuclear theory is to make quantitative predictions of low-energy nuclear observables starting from
accurate microscopic internucleon forces. A major element of such an effort is applying unitary transformations to
soften the nuclear Hamiltonian and hence accelerate the convergence of ab initio calculations as a function of the
model space size. The consistent simultaneous transformation of external operators, however, has been overlooked
in applications of the theory, particularly for nonscalar transitions. We study the evolution of the electric dipole
operator in the framework of the similarity renormalization group method and apply the renormalized matrix
elements to the calculation of the 4He total photoabsorption cross section and electric dipole polarizability. All
observables are calculated within the ab initio no-core shell model. We find that, although seemingly small, the
effects of evolved operators on the photoabsorption cross section are comparable in magnitude to the correction
produced by including the chiral three-nucleon force and cannot be neglected.
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I. INTRODUCTION

Unitary transformations of the Hamiltonian have been used
to great effect in a range of nuclear physics problems [1–11]
to decouple high- and low-momentum components of the
interaction and promote numerical convergence in large, but
finite model spaces. However, in an A-nucleon system, such
beneficial decoupling of momentum scales comes at the price
of an effective Hamiltonian containing irreducible three- and
higher-body (up to A-body) terms, even when initially absent.
In addition, for consistency the same unitary transformation
must to be applied to any operator associated with measurable
quantities. This, once again, will induce many-body operators.

Widely adopted is the similarity renormalization group
(SRG) method, which employs a continuous unitary trans-
formation of the Hamiltonian characterized by a momentum
resolution scale λ [12]. The SRG transformation (or evolution)
of the Hamiltonian has been carried out up to the three-body
level both on a harmonic oscillator (HO) basis [8,13–15]
and, more recently, in momentum representation [16], and
the resulting interactions have been successfully applied to
compute properties of a variety of nuclei [8,9,11,13,14,17–19].

For systems with up to A ≃ 10 nucleons, bound-state
calculations including up to three-body-induced forces have
been shown to lead to energies mostly independent of λ
above 1.8 fm−1, i.e., to approximately preserve the unitarity
of the transformation [8,13,14]. Small variations of the SRG
momentum scale around 2 fm−1 have been also shown to
produce mostly negligible differences in n- 4He [20] and
n- 8Be [21] elastic phase shifts, but a more quantitative
investigation has not been possible due to a slower rate
of convergence for larger λ values combined with the high
computational demand.
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Few studies have dealt with the consistent transformation
and application of operators, the other component required for
an accurate description of measurable nuclear properties when
using effective interactions. This was first studied using the
Okubo-Lee-Suzuki (LS) renormalization [1,22,23] to compute
electromagnetic properties for several nuclei [24]. For the
SRG, the evolution of operators was achieved for the first
time in the deuteron, where only one- or two-body operators
are relevant, working in a momentum representation [25]. The
more complicated process of evolving and applying operators
in finite nuclei beyond the deuteron was first examined in
Ref. [26]. There, working on a translationally invariant HO
basis, we extended the approach of Ref. [13] to evolve scalar
(i.e., rank zero in both angular momentum and isospin)
operators in the two- and three-body spaces and used the
resulting matrix elements to calculate expectation values on the
ground state (g.s.) of the 4He nucleus. (Note that only scalar
operators contribute to expectation values for this J πT = 0+0
four-nucleon state.) In particular, we showed that the inclusion
of up to three-body matrix elements in the 4He nucleus
all but completely restores the invariance of the root-mean
square radius and total electric dipole strength under the SRG
transformation.

While the work of Ref. [26] allowed us to perform
initial proof-of-principle calculations, a general description of
observables also requires the ability to evolve, and embed in
finite nuclei, nonscalar operators. Further, more work is needed
to accurately assess the consistency of the SRG approach
for the description of continuum observables. Starting from
an initial nucleon-nucleon plus three-nucleon (NN + 3N )
Hamiltonian from chiral effective field theory [27,28], in this
paper we present the first application of the SRG approach to
compute the 4He photoabsorption cross section and electric
dipole polarizability. All induced forces up to the three-body
level are retained in the transformed Hamiltonian, while
the leading electric dipole transition operator is determined
(for the first time) by evolution in the A = 2 system. All
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Ab initio calculations of atomic nuclei have become in-
creasingly successful in recent years, including first principles
calculation of astrophysically relevant fusion reactions [1,2],
of the anomalously long lifetime of 14C [3], and of the crucial
Hoyle state in 12C [4]. Of particular importance is the need to
include ab initio three-body forces, for example, in correctly
describing nuclear binding energies and spectra, especially the
ground state spin of p-shell nuclei [5], the lifetime of 14C [3],
and the location of the neutron drip line for oxygen [6–8],
nitrogen, and fluorine [9] isotopes.

These breakthrough discoveries have been driven by
advances in computing, in effective field theory [10–13],
in techniques for the solution of the nuclear many-body
problem, such as the no-core shell model (NCSM) [14–16]
among others [4,7,9,17–20], and in modern effective inter-
action theory [21,22]. The latter takes the form of unitary
transformations chosen to reduce the coupling between low-
and high-momentum states, which arises from the bare nuclear
interaction’s “hard core” and leads to slow convergence in the
size of the model space.

Here we focus on the similarity renormalization group
(SRG) [23–26], which has been successful when computing
nuclear properties for a variety of nuclei [20–22,27–31].
Despite the name, SRG is not related to renormalization of
any quantum field theory; within a many-body space the SRG
is a series of unitary transformations on the Hamiltonian,

Ĥs = ÛsĤs=0Û
†
s , (1)

where Ûs labels the sequence of transformations starting
with the initial Hamiltonian at s = 0. This can be rewritten
as a flow equation in s and an anti-Hermitian generator,
η̂s = (dÛs/ds)Û †

s ,

dĤs

ds
= [η̂s ,Ĥs]. (2)

The generator is commonly chosen to be [T̂ ,Ĥs], where T̂
is the kinetic energy operator. This drives the Hamiltonian
towards diagonal form in momentum space, thus decoupling
low- and high-momentum states, though other generators
have also been successful [32]. Rather than s, it is common
to use the parameter λ, with units of momentum [where
s−1 = (!λ)4/m2, and m is the nucleon mass], to measure
the spread of off-diagonal strength and keep track of the
sequence of Hamiltonians [27,28]; note that as λ decreases,
the Hamiltonian will undergo more evolution and λ = ∞
corresponds to the bare Hamiltonian.

While formally the transformed Hamiltonian should be
independent of the unitary transformation and specifically of
the SRG flow parameter, the evolution induces higher order
terms, up to A-body, into the Hamiltonian. Previous work has
suggested that stopping at three-body terms leads to energies
mostly independent of λ [28]. There is more to physics than
energy spectra, however. For instance, we want to accurately
quantify electric dipole transitions which lead to important ob-
servables, e.g., the polarization of a nucleus [33], or the radia-
tive capture 7Be(p,γ )8B, crucial to understanding the neutrino
signature of our sun [1,34]. The consistent coupling of external
fields such as photons to nuclear currents associated with the
chosen initial nuclear Hamiltonian can be complicated [35–39]
but is not the focus here. Rather, we are interested in the
consistent application of the SRG evolution in the many-
body space, which requires that operators be transformed
according to

Ôs = ÛsÔs=0Û
†
s , (3)

using the same sequence of unitary transformations that were
applied to the Hamiltonian. While this can be rewritten into a
similar form as Eq. (2), it is more computationally efficient to
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I. INTRODUCTION

Unitary transformations of the Hamiltonian have been used
to great effect in a range of nuclear physics problems [1–11]
to decouple high- and low-momentum components of the
interaction and promote numerical convergence in large, but
finite model spaces. However, in an A-nucleon system, such
beneficial decoupling of momentum scales comes at the price
of an effective Hamiltonian containing irreducible three- and
higher-body (up to A-body) terms, even when initially absent.
In addition, for consistency the same unitary transformation
must to be applied to any operator associated with measurable
quantities. This, once again, will induce many-body operators.

Widely adopted is the similarity renormalization group
(SRG) method, which employs a continuous unitary trans-
formation of the Hamiltonian characterized by a momentum
resolution scale λ [12]. The SRG transformation (or evolution)
of the Hamiltonian has been carried out up to the three-body
level both on a harmonic oscillator (HO) basis [8,13–15]
and, more recently, in momentum representation [16], and
the resulting interactions have been successfully applied to
compute properties of a variety of nuclei [8,9,11,13,14,17–19].

For systems with up to A ≃ 10 nucleons, bound-state
calculations including up to three-body-induced forces have
been shown to lead to energies mostly independent of λ
above 1.8 fm−1, i.e., to approximately preserve the unitarity
of the transformation [8,13,14]. Small variations of the SRG
momentum scale around 2 fm−1 have been also shown to
produce mostly negligible differences in n- 4He [20] and
n- 8Be [21] elastic phase shifts, but a more quantitative
investigation has not been possible due to a slower rate
of convergence for larger λ values combined with the high
computational demand.
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Few studies have dealt with the consistent transformation
and application of operators, the other component required for
an accurate description of measurable nuclear properties when
using effective interactions. This was first studied using the
Okubo-Lee-Suzuki (LS) renormalization [1,22,23] to compute
electromagnetic properties for several nuclei [24]. For the
SRG, the evolution of operators was achieved for the first
time in the deuteron, where only one- or two-body operators
are relevant, working in a momentum representation [25]. The
more complicated process of evolving and applying operators
in finite nuclei beyond the deuteron was first examined in
Ref. [26]. There, working on a translationally invariant HO
basis, we extended the approach of Ref. [13] to evolve scalar
(i.e., rank zero in both angular momentum and isospin)
operators in the two- and three-body spaces and used the
resulting matrix elements to calculate expectation values on the
ground state (g.s.) of the 4He nucleus. (Note that only scalar
operators contribute to expectation values for this J πT = 0+0
four-nucleon state.) In particular, we showed that the inclusion
of up to three-body matrix elements in the 4He nucleus
all but completely restores the invariance of the root-mean
square radius and total electric dipole strength under the SRG
transformation.

While the work of Ref. [26] allowed us to perform
initial proof-of-principle calculations, a general description of
observables also requires the ability to evolve, and embed in
finite nuclei, nonscalar operators. Further, more work is needed
to accurately assess the consistency of the SRG approach
for the description of continuum observables. Starting from
an initial nucleon-nucleon plus three-nucleon (NN + 3N )
Hamiltonian from chiral effective field theory [27,28], in this
paper we present the first application of the SRG approach to
compute the 4He photoabsorption cross section and electric
dipole polarizability. All induced forces up to the three-body
level are retained in the transformed Hamiltonian, while
the leading electric dipole transition operator is determined
(for the first time) by evolution in the A = 2 system. All
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FIG. 2. (Color online) Convergence of the total dipole strength
M0 of 4He as a function of Nmax using the bare operator and evolved
wave functions from the NN + 3N Hamiltonian with λ = 2.5 fm−1

at !" = 22, 28, 34, and 40 MeV.

analyzing the total strength, M0, of the bare dipole operator
evaluated on the 4He evolved g.s. wave function (using, in
this example, the NN + 3N Hamiltonian with λ = 2.5 fm−1)
for a range of HO frequencies and various basis sizes. As
Nmax increases, the total dipole strength becomes more and
more independent from the choice of the !" value in the
range 22–40 MeV, reaching a flat behavior in the largest model
spaces. The weakest Nmax dependence is found for frequencies
between 22 and 28 MeV, for which an excellent convergence
is already achieved at Nmax = 18 proceeding from above and
from below, respectively. These two !" values are adopted for
the reminder of our study. In addition, our choices for Nmax
have been shown to be fully converged and robust against
changes to the HO frequency [52].

The typical convergence of M0 as a function of Nmax,
computed as the norm ||D̂|#0⟩||2, for the bare and 2B
evolved dipole operators is presented in Figs. 3(a) and 3(b),

respectively. Because the dipole is a long-range operator,
we see almost no increase in the rate of convergence of
the evolved over the bare operator (both evaluated, as in
Fig. 2, on NN + 3N evolved wave functions). Rather, the SRG
evolution of the wave function provides a smooth convergence
pattern, especially at smaller values of λ, regardless of the
level of operator evolution. As an example, for λ = 2.5 fm−1

the M0 values begin to follow an exponential convergence
above Nmax = 10, whereas at λ = 1.8 fm−1 the exponential
convergence already starts at Nmax ∼ 6. This could be used
effectively to extrapolate to Nmax = ∞ in heavier systems
where one cannot feasibly reach large Nmax values or where
convergence of observables is very slow.

As is discussed in the next section and can be seen in
Figs. 3(a) and 3(b), for dipole transitions the converged values
tend to increase as λ decreases. This is due to the omission
of induced many-body [3B and four-body (4B) in the case of
Fig. 3(b)] contributions to the SRG evolved operator. Indeed,
the difference between the M0 values obtained with bare and
2B evolved operators is much larger at 1.8 than at 3.0 fm−1

due to the increasing strength of the SRG-induced terms as λ
decreases.

In Fig. 4 we compare the convergence with respect to Nmax
of M0 computed in two different ways: as the norm ||D̂|#0⟩||2
of the 2B evolved dipole operator, D̂, acting on the 4He g.s.
and as the expectation value on the g.s. wave function of the
2B evolved D̂†D̂ operator. The two procedures yield the same
results when the bare operators are employed, represented by
the arrow in the figure. However, in general the same is not true
upon the SRG evolution, which results in slightly different M0
values. There are two factors that contribute to this difference:
(i) the operators exhibit different short-range properties (in this
case, r versus r2, respectively); and (ii) in calculating M0 as
the square norm of the 2B evolved dipole operator acting on
the ground state, we also implicitly include selected 3B and
4B matrix elements. Similar to what we have observed for
the bare operator, varying the oscillator frequency from 22 to
28 MeV produces little change in the converged value of the
observables. This is not surprising considering the large model

2 4 6 8 10 12 14 16 18

0.8

0.82

0.84

0.86

0.88

0.9

0.92

Bare operator

(a)

M
0

[fm
2
]

Ω = 28 MeV

NA2max = 300

NA3max = 40

Nmax

4He

λ = 1.8 fm−1

λ = 2.0 fm−1

λ = 2.2 fm−1

λ = 2.5 fm−1

λ = 3.0 fm−1

2 4 6 8 10 12 14 16 18

0.8

0.82

0.84

0.86

0.88

0.9

0.92 (b)

2B evolved operator

M
0

[fm
2
]

Ω = 28 MeV

NA2max = 300

NA3max = 40

Nmax

4He

λ = 1.8 fm−1

λ = 2.0 fm−1

λ = 2.2 fm−1

λ = 2.5 fm−1

λ = 3.0 fm−1

FIG. 3. (Color online) Convergence of the total dipole strength M0 of 4He as a function of Nmax at !" = 28 MeV using (a) the bare and
(b) the 2B evolved D̂ operator and wave functions from the NN + 3N Hamiltonian with λ = 1.8, 2.2, 2.5, and 3.0 fm−1.

014320-5

OPERATOR EVOLUTION FOR AB INITIO . . . PHYSICAL REVIEW C 92, 014320 (2015)

22 24 26 28 30 32 34 36 38 40
0.7

0.75

0.8

0.85

0.9

0.95

2
4
6
8
10
12
14
16
18
20

Bare operator

M
0

[fm
2
]

NA2max = 300
NA3max = 40

Ω

4He

λ = 2.5 fm−1

Nmax

FIG. 2. (Color online) Convergence of the total dipole strength
M0 of 4He as a function of Nmax using the bare operator and evolved
wave functions from the NN + 3N Hamiltonian with λ = 2.5 fm−1
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analyzing the total strength, M0, of the bare dipole operator
evaluated on the 4He evolved g.s. wave function (using, in
this example, the NN + 3N Hamiltonian with λ = 2.5 fm−1)
for a range of HO frequencies and various basis sizes. As
Nmax increases, the total dipole strength becomes more and
more independent from the choice of the !" value in the
range 22–40 MeV, reaching a flat behavior in the largest model
spaces. The weakest Nmax dependence is found for frequencies
between 22 and 28 MeV, for which an excellent convergence
is already achieved at Nmax = 18 proceeding from above and
from below, respectively. These two !" values are adopted for
the reminder of our study. In addition, our choices for Nmax
have been shown to be fully converged and robust against
changes to the HO frequency [52].

The typical convergence of M0 as a function of Nmax,
computed as the norm ||D̂|#0⟩||2, for the bare and 2B
evolved dipole operators is presented in Figs. 3(a) and 3(b),

respectively. Because the dipole is a long-range operator,
we see almost no increase in the rate of convergence of
the evolved over the bare operator (both evaluated, as in
Fig. 2, on NN + 3N evolved wave functions). Rather, the SRG
evolution of the wave function provides a smooth convergence
pattern, especially at smaller values of λ, regardless of the
level of operator evolution. As an example, for λ = 2.5 fm−1

the M0 values begin to follow an exponential convergence
above Nmax = 10, whereas at λ = 1.8 fm−1 the exponential
convergence already starts at Nmax ∼ 6. This could be used
effectively to extrapolate to Nmax = ∞ in heavier systems
where one cannot feasibly reach large Nmax values or where
convergence of observables is very slow.

As is discussed in the next section and can be seen in
Figs. 3(a) and 3(b), for dipole transitions the converged values
tend to increase as λ decreases. This is due to the omission
of induced many-body [3B and four-body (4B) in the case of
Fig. 3(b)] contributions to the SRG evolved operator. Indeed,
the difference between the M0 values obtained with bare and
2B evolved operators is much larger at 1.8 than at 3.0 fm−1

due to the increasing strength of the SRG-induced terms as λ
decreases.

In Fig. 4 we compare the convergence with respect to Nmax
of M0 computed in two different ways: as the norm ||D̂|#0⟩||2
of the 2B evolved dipole operator, D̂, acting on the 4He g.s.
and as the expectation value on the g.s. wave function of the
2B evolved D̂†D̂ operator. The two procedures yield the same
results when the bare operators are employed, represented by
the arrow in the figure. However, in general the same is not true
upon the SRG evolution, which results in slightly different M0
values. There are two factors that contribute to this difference:
(i) the operators exhibit different short-range properties (in this
case, r versus r2, respectively); and (ii) in calculating M0 as
the square norm of the 2B evolved dipole operator acting on
the ground state, we also implicitly include selected 3B and
4B matrix elements. Similar to what we have observed for
the bare operator, varying the oscillator frequency from 22 to
28 MeV produces little change in the converged value of the
observables. This is not surprising considering the large model
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the expectation value of the renormalized r̂2 operator on the
ground-state wave functions of 2H and 3H nuclei. Figure 1
shows the rms radii of 3H for the three levels of operator
evolution described previously, with a range of λ from 1.5 to
3.0 fm−1 and !" = 20 MeV. This range of λ has shown to
improve convergence for energy calculations [27]. To obtain
converged expectation values (to within less than 0.1%) we
truncate the A = 2 model space at Nmax = 300 and the A = 3
model space at Nmax = 46, denoted as NA2max and NA3max,
respectively.

As expected, when using the bare operator the rms radius
has a clear dependence on λ even when the Hamiltonian
includes three-body SRG-induced terms. When the operator
is evolved in the two-body space, the dependence is reduced
but still significant. However, when evolved in the three-body
space there is no dependence on λ since both the Hamiltonian
and the r̂2 operator include all SRG-induced terms; thus
the transformation is exactly unitary. This is confirmed by the
agreement with the expectation value calculated using the bare
Hamiltonian and bare operator, shown in Fig. 1 as a dotted line.

We next extend these calculations to 4He, and compute the
rms radius and total strength of the dipole transition. Figure 2
shows these calculations in a range of λ from 1.5 to 3.0 fm−1

with !" = 28 MeV. We truncate the A = 2 model space at
NA2max = 300, the A = 3 model space at NA3max = 40, and
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FIG. 2. (Color online) Calculations of 4He ground-state energy
(a), rms radius (b), and total strength of the dipole transition (c) for
Nmax = 18, with a range of λ from 1.5 fm−1 to 3.0 fm−1. The purple
(gray) dot-dashed line indicates results obtained with the NN-only
Hamiltonian. The dotted line in panel (b) indicates the rms radius
computed using the bare Hamiltonian and bare operator. See also
caption of Fig. 1.

the the A = 4 space at Nmax = 18, which leads to converged
results within less than 0.1% for both observables. Results
for the ground-state energy have been previously studied [28].
They are shown here again in Fig. 2(a) to emphasize that
without SRG-induced three-body terms in the Hamiltonian
(NN-only curve), the ground-state energy is dependent on λ.
When three-body terms are included, however, the ground-
state energy is independent of λ above 1.8 fm−1. Below λ =
1.8 fm−1 the binding energy drops due to the missing four-body
SRG-induced terms.

Figures 2(b) and 2(c) show the results for the rms radius and
total strength of the dipole transition, respectively. The trends
of these results are similar because the operators are closely
related [43]. When using the bare operator, the observable has
a significant λ dependence at small values. However, when
evolved in the two- and then in the three-body space, indepen-
dence is all but restored. The transformation is not completely
unitary due to the SRG-induced four-body terms we do not
include. This slightly increases the observables at smaller λ
values. For the rms radius we also show the value obtained with
the bare NN + 3N Hamiltonian and bare operator (dotted line).
One can see that the relative contribution to the expectation
value due to the two-body evolution of the operator, given as
the difference between the bare and 2B evolved value, is larger
than the respective three-body contribution (the difference
between the 2B evolved and 3B evolved value). The four-body
contribution (estimated in this case as the difference between
the 3B evolved value and the dotted line for the rms radius) is
smaller still. This gives hope that a similar pattern of uniform
convergence in the number of bodies will hold for larger nuclei.
The bare result is also recovered at large values of λ, where
the induced terms affecting the operator become increasingly
small. The tradeoff, however, is a much slower convergence
rate, which would require prohibitively large model space sizes
for heavier mass systems. There, λ is typically chosen between
1.8 and 2.0 fm−1, where one can speed up the convergence
while keeping to a minimum the effect of beyond-three-body
induced forces.

Our investigation so far has considered two long-range
operators, r̂2 and D̂2, and has shown a relatively small, but
nontrivial, renormalization. To highlight the importance of
operator range when using the SRG method, in combination
with operators evolved in the three-body space, we use a
Gaussian two-body operator of range a0,

Ô(r⃗1,r⃗2) = A exp
(

− (r⃗1 − r⃗2)2

a2
0

)
, (6)

where A is the normalization chosen to be

A
∫

exp
(

− r2

a2
0

)
dr⃗ = 1. (7)

This follows a prescription similar to that of Ref. [40], where
the authors focus on operator range and Okubo-Lee-Suzuki
renormalization. Although this operator does not represent any
physical phenomena, one can easily adjust its range, giving us
a systematic way to explore the amount of renormalization
for operators evolved via SRG. We define the amount of
renormalization as (⟨Ôeff⟩ − ⟨Ôbare⟩)/⟨Ôbare⟩ × 100. Figure 3
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The past two decades have seen a revolution in ab initio calculations of nuclear properties. One key element
has been the development of a rigorous effective interaction theory, applying unitary transformations to soften the
nuclear Hamiltonian and hence accelerate the convergence as a function of the model space size. For consistency,
however, one ought to apply the same transformation to other operators when calculating transitions and mean
values from the eigenstates of the renormalized Hamiltonian. Working in a translationally invariant harmonic
oscillator basis for the two- and three-nucleon systems, we evolve the Hamiltonian, square radius, and total
dipole strength operators by the similarity renormalization group (SRG). The inclusion of up to three-body
matrix elements in the 4He nucleus all but completely restores the invariance of the expectation values under
the transformation. We also consider a Gaussian operator with adjustable range; short ranges have the largest
absolute renormalization when including two- and three-body induced terms, while at long ranges the induced
three-body contribution takes on increased relative importance.
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Ab initio calculations of atomic nuclei have become in-
creasingly successful in recent years, including first principles
calculation of astrophysically relevant fusion reactions [1,2],
of the anomalously long lifetime of 14C [3], and of the crucial
Hoyle state in 12C [4]. Of particular importance is the need to
include ab initio three-body forces, for example, in correctly
describing nuclear binding energies and spectra, especially the
ground state spin of p-shell nuclei [5], the lifetime of 14C [3],
and the location of the neutron drip line for oxygen [6–8],
nitrogen, and fluorine [9] isotopes.

These breakthrough discoveries have been driven by
advances in computing, in effective field theory [10–13],
in techniques for the solution of the nuclear many-body
problem, such as the no-core shell model (NCSM) [14–16]
among others [4,7,9,17–20], and in modern effective inter-
action theory [21,22]. The latter takes the form of unitary
transformations chosen to reduce the coupling between low-
and high-momentum states, which arises from the bare nuclear
interaction’s “hard core” and leads to slow convergence in the
size of the model space.

Here we focus on the similarity renormalization group
(SRG) [23–26], which has been successful when computing
nuclear properties for a variety of nuclei [20–22,27–31].
Despite the name, SRG is not related to renormalization of
any quantum field theory; within a many-body space the SRG
is a series of unitary transformations on the Hamiltonian,

Ĥs = ÛsĤs=0Û
†
s , (1)

where Ûs labels the sequence of transformations starting
with the initial Hamiltonian at s = 0. This can be rewritten
as a flow equation in s and an anti-Hermitian generator,
η̂s = (dÛs/ds)Û †

s ,

dĤs

ds
= [η̂s ,Ĥs]. (2)

The generator is commonly chosen to be [T̂ ,Ĥs], where T̂
is the kinetic energy operator. This drives the Hamiltonian
towards diagonal form in momentum space, thus decoupling
low- and high-momentum states, though other generators
have also been successful [32]. Rather than s, it is common
to use the parameter λ, with units of momentum [where
s−1 = (!λ)4/m2, and m is the nucleon mass], to measure
the spread of off-diagonal strength and keep track of the
sequence of Hamiltonians [27,28]; note that as λ decreases,
the Hamiltonian will undergo more evolution and λ = ∞
corresponds to the bare Hamiltonian.

While formally the transformed Hamiltonian should be
independent of the unitary transformation and specifically of
the SRG flow parameter, the evolution induces higher order
terms, up to A-body, into the Hamiltonian. Previous work has
suggested that stopping at three-body terms leads to energies
mostly independent of λ [28]. There is more to physics than
energy spectra, however. For instance, we want to accurately
quantify electric dipole transitions which lead to important ob-
servables, e.g., the polarization of a nucleus [33], or the radia-
tive capture 7Be(p,γ )8B, crucial to understanding the neutrino
signature of our sun [1,34]. The consistent coupling of external
fields such as photons to nuclear currents associated with the
chosen initial nuclear Hamiltonian can be complicated [35–39]
but is not the focus here. Rather, we are interested in the
consistent application of the SRG evolution in the many-
body space, which requires that operators be transformed
according to

Ôs = ÛsÔs=0Û
†
s , (3)

using the same sequence of unitary transformations that were
applied to the Hamiltonian. While this can be rewritten into a
similar form as Eq. (2), it is more computationally efficient to
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A goal of nuclear theory is to make quantitative predictions of low-energy nuclear observables starting from
accurate microscopic internucleon forces. A major element of such an effort is applying unitary transformations to
soften the nuclear Hamiltonian and hence accelerate the convergence of ab initio calculations as a function of the
model space size. The consistent simultaneous transformation of external operators, however, has been overlooked
in applications of the theory, particularly for nonscalar transitions. We study the evolution of the electric dipole
operator in the framework of the similarity renormalization group method and apply the renormalized matrix
elements to the calculation of the 4He total photoabsorption cross section and electric dipole polarizability. All
observables are calculated within the ab initio no-core shell model. We find that, although seemingly small, the
effects of evolved operators on the photoabsorption cross section are comparable in magnitude to the correction
produced by including the chiral three-nucleon force and cannot be neglected.
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I. INTRODUCTION

Unitary transformations of the Hamiltonian have been used
to great effect in a range of nuclear physics problems [1–11]
to decouple high- and low-momentum components of the
interaction and promote numerical convergence in large, but
finite model spaces. However, in an A-nucleon system, such
beneficial decoupling of momentum scales comes at the price
of an effective Hamiltonian containing irreducible three- and
higher-body (up to A-body) terms, even when initially absent.
In addition, for consistency the same unitary transformation
must to be applied to any operator associated with measurable
quantities. This, once again, will induce many-body operators.

Widely adopted is the similarity renormalization group
(SRG) method, which employs a continuous unitary trans-
formation of the Hamiltonian characterized by a momentum
resolution scale λ [12]. The SRG transformation (or evolution)
of the Hamiltonian has been carried out up to the three-body
level both on a harmonic oscillator (HO) basis [8,13–15]
and, more recently, in momentum representation [16], and
the resulting interactions have been successfully applied to
compute properties of a variety of nuclei [8,9,11,13,14,17–19].

For systems with up to A ≃ 10 nucleons, bound-state
calculations including up to three-body-induced forces have
been shown to lead to energies mostly independent of λ
above 1.8 fm−1, i.e., to approximately preserve the unitarity
of the transformation [8,13,14]. Small variations of the SRG
momentum scale around 2 fm−1 have been also shown to
produce mostly negligible differences in n- 4He [20] and
n- 8Be [21] elastic phase shifts, but a more quantitative
investigation has not been possible due to a slower rate
of convergence for larger λ values combined with the high
computational demand.

*mschuste@rohan.sdsu.edu
†quaglioni1@llnl.gov
‡cjohnson@mail.sdsu.edu

Few studies have dealt with the consistent transformation
and application of operators, the other component required for
an accurate description of measurable nuclear properties when
using effective interactions. This was first studied using the
Okubo-Lee-Suzuki (LS) renormalization [1,22,23] to compute
electromagnetic properties for several nuclei [24]. For the
SRG, the evolution of operators was achieved for the first
time in the deuteron, where only one- or two-body operators
are relevant, working in a momentum representation [25]. The
more complicated process of evolving and applying operators
in finite nuclei beyond the deuteron was first examined in
Ref. [26]. There, working on a translationally invariant HO
basis, we extended the approach of Ref. [13] to evolve scalar
(i.e., rank zero in both angular momentum and isospin)
operators in the two- and three-body spaces and used the
resulting matrix elements to calculate expectation values on the
ground state (g.s.) of the 4He nucleus. (Note that only scalar
operators contribute to expectation values for this J πT = 0+0
four-nucleon state.) In particular, we showed that the inclusion
of up to three-body matrix elements in the 4He nucleus
all but completely restores the invariance of the root-mean
square radius and total electric dipole strength under the SRG
transformation.

While the work of Ref. [26] allowed us to perform
initial proof-of-principle calculations, a general description of
observables also requires the ability to evolve, and embed in
finite nuclei, nonscalar operators. Further, more work is needed
to accurately assess the consistency of the SRG approach
for the description of continuum observables. Starting from
an initial nucleon-nucleon plus three-nucleon (NN + 3N )
Hamiltonian from chiral effective field theory [27,28], in this
paper we present the first application of the SRG approach to
compute the 4He photoabsorption cross section and electric
dipole polarizability. All induced forces up to the three-body
level are retained in the transformed Hamiltonian, while
the leading electric dipole transition operator is determined
(for the first time) by evolution in the A = 2 system. All

0556-2813/2015/92(1)/014320(11) 014320-1 ©2015 American Physical Society
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FIG. 3. (Color online) Renormalization percent as a function of
range of a Gaussian operator [see Eq. (6)] for three values of the
SRG parameter, λ: 1.5 fm−1 (solid line), 2.0 fm−1 (dashed line), and
2.5 fm−1 (dot-dashed line). Symbols as in the caption of Fig. 1. The
wave function is from the NN + 3N SRG evolved Hamiltonian.

shows the results using the same 4He ground-state wave
function as above.

At short ranges the expectation values computed with
the SRG evolved operator, whether evolved in the two- or
three-body space, are significantly renormalized from the bare
operator, while as the range increases, the renormalization
tends towards zero. More interesting is the three-body contri-
bution to the overall renormalization. The relative three-body
contribution tends to increase as the range of the operator
increases, approximately 25% at a0 = 0.2 fm to 50% at
a0 = 1.6 fm, even though the absolute magnitude of the
three-body contribution decreases. Beyond λ = 2.5 fm−1, the
renormalization is close to zero for all but the shortest ranges,

so we do not show larger values of λ here. This shows that the
amount of renormalization that occurs to an operator is highly
dependent on that operator’s range, confirming and extending
previous work done in the two-body space [40,41].

In summary, we have, for the first time, SRG evolved several
operators in the two- and three-body spaces and computed
expectation values using ground-state wave functions of 3H
and 4He. For A = 2 and 3 this completely restored unitarity,
that is, independence of the SRG evolution parameter λ.
When including up to three-body induced terms in the A = 4
system, the dependence on λ was dramatically reduced but not
eliminated due to the induced four-body terms. This parallels
what was previously found for the ground-state energy [27,28].
By using a Gaussian operator with adjustable range, we
demonstrated the relative size of the induced three-body terms
were larger for shorter ranges. Future work will include adding
the ability to evolve nonscalar operators, which will allow us
to investigate other quantities such as transition strengths and
cross sections. We will also extend these calculations to heavier
systems (e.g., A = 5–12), where it is computationally more
advantageous to work with single-particle Slater determinant
basis states. This can be accomplished by transforming the
present translationally invariant three-body operators into
matrix elements over Slater determinant three-nucleon basis
states, similarly to what has been done for the 3N force.
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the expectation value of the renormalized r̂2 operator on the
ground-state wave functions of 2H and 3H nuclei. Figure 1
shows the rms radii of 3H for the three levels of operator
evolution described previously, with a range of λ from 1.5 to
3.0 fm−1 and !" = 20 MeV. This range of λ has shown to
improve convergence for energy calculations [27]. To obtain
converged expectation values (to within less than 0.1%) we
truncate the A = 2 model space at Nmax = 300 and the A = 3
model space at Nmax = 46, denoted as NA2max and NA3max,
respectively.

As expected, when using the bare operator the rms radius
has a clear dependence on λ even when the Hamiltonian
includes three-body SRG-induced terms. When the operator
is evolved in the two-body space, the dependence is reduced
but still significant. However, when evolved in the three-body
space there is no dependence on λ since both the Hamiltonian
and the r̂2 operator include all SRG-induced terms; thus
the transformation is exactly unitary. This is confirmed by the
agreement with the expectation value calculated using the bare
Hamiltonian and bare operator, shown in Fig. 1 as a dotted line.

We next extend these calculations to 4He, and compute the
rms radius and total strength of the dipole transition. Figure 2
shows these calculations in a range of λ from 1.5 to 3.0 fm−1

with !" = 28 MeV. We truncate the A = 2 model space at
NA2max = 300, the A = 3 model space at NA3max = 40, and
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FIG. 2. (Color online) Calculations of 4He ground-state energy
(a), rms radius (b), and total strength of the dipole transition (c) for
Nmax = 18, with a range of λ from 1.5 fm−1 to 3.0 fm−1. The purple
(gray) dot-dashed line indicates results obtained with the NN-only
Hamiltonian. The dotted line in panel (b) indicates the rms radius
computed using the bare Hamiltonian and bare operator. See also
caption of Fig. 1.

the the A = 4 space at Nmax = 18, which leads to converged
results within less than 0.1% for both observables. Results
for the ground-state energy have been previously studied [28].
They are shown here again in Fig. 2(a) to emphasize that
without SRG-induced three-body terms in the Hamiltonian
(NN-only curve), the ground-state energy is dependent on λ.
When three-body terms are included, however, the ground-
state energy is independent of λ above 1.8 fm−1. Below λ =
1.8 fm−1 the binding energy drops due to the missing four-body
SRG-induced terms.

Figures 2(b) and 2(c) show the results for the rms radius and
total strength of the dipole transition, respectively. The trends
of these results are similar because the operators are closely
related [43]. When using the bare operator, the observable has
a significant λ dependence at small values. However, when
evolved in the two- and then in the three-body space, indepen-
dence is all but restored. The transformation is not completely
unitary due to the SRG-induced four-body terms we do not
include. This slightly increases the observables at smaller λ
values. For the rms radius we also show the value obtained with
the bare NN + 3N Hamiltonian and bare operator (dotted line).
One can see that the relative contribution to the expectation
value due to the two-body evolution of the operator, given as
the difference between the bare and 2B evolved value, is larger
than the respective three-body contribution (the difference
between the 2B evolved and 3B evolved value). The four-body
contribution (estimated in this case as the difference between
the 3B evolved value and the dotted line for the rms radius) is
smaller still. This gives hope that a similar pattern of uniform
convergence in the number of bodies will hold for larger nuclei.
The bare result is also recovered at large values of λ, where
the induced terms affecting the operator become increasingly
small. The tradeoff, however, is a much slower convergence
rate, which would require prohibitively large model space sizes
for heavier mass systems. There, λ is typically chosen between
1.8 and 2.0 fm−1, where one can speed up the convergence
while keeping to a minimum the effect of beyond-three-body
induced forces.

Our investigation so far has considered two long-range
operators, r̂2 and D̂2, and has shown a relatively small, but
nontrivial, renormalization. To highlight the importance of
operator range when using the SRG method, in combination
with operators evolved in the three-body space, we use a
Gaussian two-body operator of range a0,

Ô(r⃗1,r⃗2) = A exp
(

− (r⃗1 − r⃗2)2

a2
0

)
, (6)

where A is the normalization chosen to be

A
∫

exp
(

− r2

a2
0

)
dr⃗ = 1. (7)

This follows a prescription similar to that of Ref. [40], where
the authors focus on operator range and Okubo-Lee-Suzuki
renormalization. Although this operator does not represent any
physical phenomena, one can easily adjust its range, giving us
a systematic way to explore the amount of renormalization
for operators evolved via SRG. We define the amount of
renormalization as (⟨Ôeff⟩ − ⟨Ôbare⟩)/⟨Ôbare⟩ × 100. Figure 3
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space there is no dependence on λ since both the Hamiltonian
and the r̂2 operator include all SRG-induced terms; thus
the transformation is exactly unitary. This is confirmed by the
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the the A = 4 space at Nmax = 18, which leads to converged
results within less than 0.1% for both observables. Results
for the ground-state energy have been previously studied [28].
They are shown here again in Fig. 2(a) to emphasize that
without SRG-induced three-body terms in the Hamiltonian
(NN-only curve), the ground-state energy is dependent on λ.
When three-body terms are included, however, the ground-
state energy is independent of λ above 1.8 fm−1. Below λ =
1.8 fm−1 the binding energy drops due to the missing four-body
SRG-induced terms.

Figures 2(b) and 2(c) show the results for the rms radius and
total strength of the dipole transition, respectively. The trends
of these results are similar because the operators are closely
related [43]. When using the bare operator, the observable has
a significant λ dependence at small values. However, when
evolved in the two- and then in the three-body space, indepen-
dence is all but restored. The transformation is not completely
unitary due to the SRG-induced four-body terms we do not
include. This slightly increases the observables at smaller λ
values. For the rms radius we also show the value obtained with
the bare NN + 3N Hamiltonian and bare operator (dotted line).
One can see that the relative contribution to the expectation
value due to the two-body evolution of the operator, given as
the difference between the bare and 2B evolved value, is larger
than the respective three-body contribution (the difference
between the 2B evolved and 3B evolved value). The four-body
contribution (estimated in this case as the difference between
the 3B evolved value and the dotted line for the rms radius) is
smaller still. This gives hope that a similar pattern of uniform
convergence in the number of bodies will hold for larger nuclei.
The bare result is also recovered at large values of λ, where
the induced terms affecting the operator become increasingly
small. The tradeoff, however, is a much slower convergence
rate, which would require prohibitively large model space sizes
for heavier mass systems. There, λ is typically chosen between
1.8 and 2.0 fm−1, where one can speed up the convergence
while keeping to a minimum the effect of beyond-three-body
induced forces.

Our investigation so far has considered two long-range
operators, r̂2 and D̂2, and has shown a relatively small, but
nontrivial, renormalization. To highlight the importance of
operator range when using the SRG method, in combination
with operators evolved in the three-body space, we use a
Gaussian two-body operator of range a0,

Ô(r⃗1,r⃗2) = A exp
(

− (r⃗1 − r⃗2)2

a2
0

)
, (6)

where A is the normalization chosen to be

A
∫

exp
(
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)
dr⃗ = 1. (7)

This follows a prescription similar to that of Ref. [40], where
the authors focus on operator range and Okubo-Lee-Suzuki
renormalization. Although this operator does not represent any
physical phenomena, one can easily adjust its range, giving us
a systematic way to explore the amount of renormalization
for operators evolved via SRG. We define the amount of
renormalization as (⟨Ôeff⟩ − ⟨Ôbare⟩)/⟨Ôbare⟩ × 100. Figure 3
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Operator evolution for ab initio theory of light nuclei
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The past two decades have seen a revolution in ab initio calculations of nuclear properties. One key element
has been the development of a rigorous effective interaction theory, applying unitary transformations to soften the
nuclear Hamiltonian and hence accelerate the convergence as a function of the model space size. For consistency,
however, one ought to apply the same transformation to other operators when calculating transitions and mean
values from the eigenstates of the renormalized Hamiltonian. Working in a translationally invariant harmonic
oscillator basis for the two- and three-nucleon systems, we evolve the Hamiltonian, square radius, and total
dipole strength operators by the similarity renormalization group (SRG). The inclusion of up to three-body
matrix elements in the 4He nucleus all but completely restores the invariance of the expectation values under
the transformation. We also consider a Gaussian operator with adjustable range; short ranges have the largest
absolute renormalization when including two- and three-body induced terms, while at long ranges the induced
three-body contribution takes on increased relative importance.
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Ab initio calculations of atomic nuclei have become in-
creasingly successful in recent years, including first principles
calculation of astrophysically relevant fusion reactions [1,2],
of the anomalously long lifetime of 14C [3], and of the crucial
Hoyle state in 12C [4]. Of particular importance is the need to
include ab initio three-body forces, for example, in correctly
describing nuclear binding energies and spectra, especially the
ground state spin of p-shell nuclei [5], the lifetime of 14C [3],
and the location of the neutron drip line for oxygen [6–8],
nitrogen, and fluorine [9] isotopes.

These breakthrough discoveries have been driven by
advances in computing, in effective field theory [10–13],
in techniques for the solution of the nuclear many-body
problem, such as the no-core shell model (NCSM) [14–16]
among others [4,7,9,17–20], and in modern effective inter-
action theory [21,22]. The latter takes the form of unitary
transformations chosen to reduce the coupling between low-
and high-momentum states, which arises from the bare nuclear
interaction’s “hard core” and leads to slow convergence in the
size of the model space.

Here we focus on the similarity renormalization group
(SRG) [23–26], which has been successful when computing
nuclear properties for a variety of nuclei [20–22,27–31].
Despite the name, SRG is not related to renormalization of
any quantum field theory; within a many-body space the SRG
is a series of unitary transformations on the Hamiltonian,

Ĥs = ÛsĤs=0Û
†
s , (1)

where Ûs labels the sequence of transformations starting
with the initial Hamiltonian at s = 0. This can be rewritten
as a flow equation in s and an anti-Hermitian generator,
η̂s = (dÛs/ds)Û †

s ,

dĤs

ds
= [η̂s ,Ĥs]. (2)

The generator is commonly chosen to be [T̂ ,Ĥs], where T̂
is the kinetic energy operator. This drives the Hamiltonian
towards diagonal form in momentum space, thus decoupling
low- and high-momentum states, though other generators
have also been successful [32]. Rather than s, it is common
to use the parameter λ, with units of momentum [where
s−1 = (!λ)4/m2, and m is the nucleon mass], to measure
the spread of off-diagonal strength and keep track of the
sequence of Hamiltonians [27,28]; note that as λ decreases,
the Hamiltonian will undergo more evolution and λ = ∞
corresponds to the bare Hamiltonian.

While formally the transformed Hamiltonian should be
independent of the unitary transformation and specifically of
the SRG flow parameter, the evolution induces higher order
terms, up to A-body, into the Hamiltonian. Previous work has
suggested that stopping at three-body terms leads to energies
mostly independent of λ [28]. There is more to physics than
energy spectra, however. For instance, we want to accurately
quantify electric dipole transitions which lead to important ob-
servables, e.g., the polarization of a nucleus [33], or the radia-
tive capture 7Be(p,γ )8B, crucial to understanding the neutrino
signature of our sun [1,34]. The consistent coupling of external
fields such as photons to nuclear currents associated with the
chosen initial nuclear Hamiltonian can be complicated [35–39]
but is not the focus here. Rather, we are interested in the
consistent application of the SRG evolution in the many-
body space, which requires that operators be transformed
according to

Ôs = ÛsÔs=0Û
†
s , (3)

using the same sequence of unitary transformations that were
applied to the Hamiltonian. While this can be rewritten into a
similar form as Eq. (2), it is more computationally efficient to
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Operator evolution for ab initio electric dipole transitions of 4He
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A goal of nuclear theory is to make quantitative predictions of low-energy nuclear observables starting from
accurate microscopic internucleon forces. A major element of such an effort is applying unitary transformations to
soften the nuclear Hamiltonian and hence accelerate the convergence of ab initio calculations as a function of the
model space size. The consistent simultaneous transformation of external operators, however, has been overlooked
in applications of the theory, particularly for nonscalar transitions. We study the evolution of the electric dipole
operator in the framework of the similarity renormalization group method and apply the renormalized matrix
elements to the calculation of the 4He total photoabsorption cross section and electric dipole polarizability. All
observables are calculated within the ab initio no-core shell model. We find that, although seemingly small, the
effects of evolved operators on the photoabsorption cross section are comparable in magnitude to the correction
produced by including the chiral three-nucleon force and cannot be neglected.

DOI: 10.1103/PhysRevC.92.014320 PACS number(s): 21.60.De, 05.10.Cc, 23.20.Js, 27.10.+h

I. INTRODUCTION

Unitary transformations of the Hamiltonian have been used
to great effect in a range of nuclear physics problems [1–11]
to decouple high- and low-momentum components of the
interaction and promote numerical convergence in large, but
finite model spaces. However, in an A-nucleon system, such
beneficial decoupling of momentum scales comes at the price
of an effective Hamiltonian containing irreducible three- and
higher-body (up to A-body) terms, even when initially absent.
In addition, for consistency the same unitary transformation
must to be applied to any operator associated with measurable
quantities. This, once again, will induce many-body operators.

Widely adopted is the similarity renormalization group
(SRG) method, which employs a continuous unitary trans-
formation of the Hamiltonian characterized by a momentum
resolution scale λ [12]. The SRG transformation (or evolution)
of the Hamiltonian has been carried out up to the three-body
level both on a harmonic oscillator (HO) basis [8,13–15]
and, more recently, in momentum representation [16], and
the resulting interactions have been successfully applied to
compute properties of a variety of nuclei [8,9,11,13,14,17–19].

For systems with up to A ≃ 10 nucleons, bound-state
calculations including up to three-body-induced forces have
been shown to lead to energies mostly independent of λ
above 1.8 fm−1, i.e., to approximately preserve the unitarity
of the transformation [8,13,14]. Small variations of the SRG
momentum scale around 2 fm−1 have been also shown to
produce mostly negligible differences in n- 4He [20] and
n- 8Be [21] elastic phase shifts, but a more quantitative
investigation has not been possible due to a slower rate
of convergence for larger λ values combined with the high
computational demand.

*mschuste@rohan.sdsu.edu
†quaglioni1@llnl.gov
‡cjohnson@mail.sdsu.edu

Few studies have dealt with the consistent transformation
and application of operators, the other component required for
an accurate description of measurable nuclear properties when
using effective interactions. This was first studied using the
Okubo-Lee-Suzuki (LS) renormalization [1,22,23] to compute
electromagnetic properties for several nuclei [24]. For the
SRG, the evolution of operators was achieved for the first
time in the deuteron, where only one- or two-body operators
are relevant, working in a momentum representation [25]. The
more complicated process of evolving and applying operators
in finite nuclei beyond the deuteron was first examined in
Ref. [26]. There, working on a translationally invariant HO
basis, we extended the approach of Ref. [13] to evolve scalar
(i.e., rank zero in both angular momentum and isospin)
operators in the two- and three-body spaces and used the
resulting matrix elements to calculate expectation values on the
ground state (g.s.) of the 4He nucleus. (Note that only scalar
operators contribute to expectation values for this J πT = 0+0
four-nucleon state.) In particular, we showed that the inclusion
of up to three-body matrix elements in the 4He nucleus
all but completely restores the invariance of the root-mean
square radius and total electric dipole strength under the SRG
transformation.

While the work of Ref. [26] allowed us to perform
initial proof-of-principle calculations, a general description of
observables also requires the ability to evolve, and embed in
finite nuclei, nonscalar operators. Further, more work is needed
to accurately assess the consistency of the SRG approach
for the description of continuum observables. Starting from
an initial nucleon-nucleon plus three-nucleon (NN + 3N )
Hamiltonian from chiral effective field theory [27,28], in this
paper we present the first application of the SRG approach to
compute the 4He photoabsorption cross section and electric
dipole polarizability. All induced forces up to the three-body
level are retained in the transformed Hamiltonian, while
the leading electric dipole transition operator is determined
(for the first time) by evolution in the A = 2 system. All

0556-2813/2015/92(1)/014320(11) 014320-1 ©2015 American Physical Society



•  Applications in SM calculations presented by Mihai Horoi 
on Thursday 
–  “0νββ Decay: To Quench or Not to Quench” 

•  2B SRG evolution of the light neutrino 0νββ 
–   chiral N3LO NN, SRG λ=2 fm-1  

•  ~5% renormalization in 76Ge  

•  2B SRG evolution of the heavy neutrino 0νββ 
–   chiral N3LO NN, SRG λ=2 fm-1  

•  ~25% renormalization in 76Ge  
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Microscopic origins of effective charges in the shell model
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We use a large-scale 6\V calculation for 6Li with microscopically derived two-body interaction to con-
struct the 0\V 0p shell effective Hamiltonian, electric quadrupole, and magnetic dipole operators. While the
E2 and M1 6\V operators are one-body operators with free nucleon charges, the effective operators are
two-body operators with substantially different renormalization for the isoscalar and isovector matrix elements,
especially for the E2 operator. We show that these operators can be very well approximated by one-body
operators provided that effective proton and neutron charges are used. The obtained effective charges are
compatible with those used in phenomenological shell-model studies. The two-body part of the effective
operators is estimated. @S0556-2813~97!50202-0#

PACS number~s!: 21.60.Cs, 21.30.Fe, 27.20.1n

Considerable effort has been devoted to derive the effec-
tive interaction used in the shell-model calculations from the
nucleon-nucleon interaction @1–3#. On the other hand, much
less work has been done to understand the effective operators
employed in calculating different nuclear, usually electro-
magnetic, properties. In particular, a microscopic derivation
of effective operators has been only partially successful. It is
well known that effective proton and neutron charges must
be employed to describe the E2 transitions and moments.
These charges are quite different from the free nucleon
charges, typically the values of eeff

p '1.5e and eeff
n '0.5e are

obtained for both light and heavy nuclei. Attempts to derive
these charges microscopically, usually by perturbation @3#, or
by an ‘‘expanded shell-model’’ approach @4#, yielded much
smaller values. It should be noted that these effective charges
correspond to a severely truncated single-major-shell, or
0\V , space. The question arises as to what causes the
nucleon properties to change so significantly, is it mostly the
result of the space truncation or the fact that nucleons are
bound? Also the non-nucleonic degrees of freedom may play
an important role. Other interesting questions are: how im-
portant are the higher than one-body parts of the effective
operators and what is the j dependence of effective charges?
In this contribution we investigate how severe space trun-

cation affects the electromagnetic operators. We use a large-
space 6\V shell-model calculation for 6Li, with a micro-
scopically derived two-body interaction, to construct an
effective Hamiltonian and effective electromagnetic opera-
tors, which will exactly reproduce the 6\V results in the
0p shell for the (0s)4(0p)2 dominated states. This enables
us to compare the resulting effective operators with the bare
one-body 0p-shell operators and to extract the relevant ef-
fective charges, which allow us to determine the amount of
renormalization, to study their j dependence, and, eventu-
ally, to quantify the two-body content of the effective opera-
tors. Also we perform the same derivation from the corre-
sponding 4\V calculation to study the dependence on the

space size and compare the rate of convergence for the ef-
fective Hamiltonian and the effective operators.
Recently, large-basis no-core shell-model calculations

have been performed @5,6#. In these calculations all nucleons
are active, which simplifies the effective interaction, as no
hole states are present. In the approach taken, the effective
interaction is determined microscopically from the nucleon-
nucleon interaction for a system of two nucleons and subse-
quently used in the many-particle calculations. To take into
account a part of the many-body effects, a multivalued effec-
tive interaction approach was introduced @6#, which uses dif-
ferent sets of the effective interaction for different \V exci-
tations. In the latest application of the no-core approach, we
derived starting-energy-independent Hermitian two-body ef-
fective interactions from the Reid 93 nucleon-nucleon poten-
tial @7# and applied them in the multivalued approach to
A53–6 nuclei @8#. In this study we use the results of this
calculation for 6Li presented in the third column of Table IV
of Ref. @8#. The many-particle calculation was done using the
many-fermion-dynamics shell-model code @9# in the m
scheme with dimensions approaching 23105. As in the pre-
vious large-scale no-core shell-model calculations @5,6#, a
reasonable description of the electromagnetic properties has
been achieved using free nucleon charges. Our aim here is to
study the renormalization of these operators, when the model
space is severely truncated.
For the 0\V dominated states of 6Li shown in Table IV

of Ref. @8#, it is possible to formulate an equivalent descrip-
tion purely in the 0p shell. We may divide the basis states of
the 6\V calculation into two subspaces, using the projectors
P and Q , P1Q51. Here the P space is spanned by the
states u(0s)4(0p)2&. There are 10 such states in the MJ50
m scheme calculation and 8 in the MJ51 calculation, re-
spectively. The Q space is then formed by the rest of the
almost 200 000 states. The effective P-space Hamiltonian
may be constructed by employing the Lee-Suzuki starting-
energy independent similarity transformation method @10#,
which gives the effective Hamiltonian PHeffP
5PHP1PHQvP , with the transformation operator v sat-
isfying v5QvP . In the case when the full space eigenvec-
tors are known, like in our situation, this operator may be
obtained directly. Let us denote the P space states as uaP&,

*On leave of absence from the Institute of Nuclear Physics, Acad-
emy of Sciences of the Czech Republic, 250 68 Řež near Prague,
Czech Republic.
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We use Lee-Suzuki mappings and related techniques to construct effective two-body p-shell interactions and
neutrinoless double-β operators that exactly reproduce the results of large no-core-shell-model calculations of
(fictitious) double-β decay in nuclei with mass number A = 6. We then apply the effective operators to the (also
fictitious) decay of nuclei with A = 7, 8, and 10, again comparing with no-core calculations in much larger
spaces. The results with the effective two-body operators are generally good. In some cases, however, they differ
non-negligibly from the full no-core results, suggesting that three-body corrections to the decay operator in
heavier nuclei may be important. An application of our procedure and related ideas to fp-shell nuclei such as
76Ge should be feasible within coupled-cluster theory.
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I. INTRODUCTION

Particle physicists hope to learn about the overall neutrino-
mass scale by observing neutrinoless double-beta (0νββ)
decay [1]. To extract a mass from a lifetime, however, one must
know the value of the nuclear matrix element that governs the
decay. For that reason, theorists have worked hard over the last
20 years to better calculate the matrix elements.

One of the best frameworks for the job at present is the
nuclear shell model. Good calculations (e.g., Refs. [2,3]) use
model spaces of dimension 107 or larger by including the full
valence shell. Even these calculations, however, omit most of
the relevant many-particle Hilbert space by requiring that most
particles remain frozen in an inert core and prohibiting even
active particles from sampling levels above the valence shell.
These approximations induce error that can in principle be
accounted for through the use of an effective Hamiltonian and
decay operator. The literature contains a number of schemes
for constructing effective operators [4,5]. In practice, however,
such techniques are generally restricted to the effective Hamil-
tonian, and even there the application is usually through a
perturbative scheme whose weaknesses must be compensated
for by fitting to spectra. The decay operator is usually not
corrected at all, except at short distances (and sometimes
through an overall phenomenological multiplication factor).
How much are calculated matrix-element corrupted as a result?
How might one do better?

To begin to answer these questions, we look at the 0νββ
matrix element in nuclei with mass number A between 6 and
10. Such nuclei, of course, do not undergo ββ decay, but
one can calculate the matrix elements nonetheless. Moreover,
in these nuclei we can carry out fairly complete no-core
shell-model (NCSM) [6] calculations and map their results
onto valence-shell (p-shell) calculations to construct effective
operators that reproduce the full matrix elements exactly. We
can then bypass perturbation theory, which is often unreliable
(and was applied inconclusively to ββ decay in Ref. [7]),

and test nonperturbative approximations to the full effective
operator. References [8,9] carried out this program for charge-
conserving electromagnetic transition operators, the leading
pieces of which are one-body. Here, the lowest-order effective
decay operator acts on two bodies, and we examine the
restriction to this leading term. We define effective operators
that reproduce the exact matrix element for the artificial
decay of states in 6He to those in 6Be. Are these operators
significantly different from their bare counterparts? Can they
also reproduce 0νββ matrix elements in heavier nuclei, or are
three- and higher-body effective operators necessary as well?
The answers will provide a good idea of how much work awaits
us in the heavier nuclei that actually undergo ββ decay.

In Sec. II below, we describe the concepts and methods we
employ. Section III presents our results, and Sec. IV discusses
their implications for matrix elements in the heavier nuclei that
are used in ββ experiments.

II. METHODS

In the closure approximation (which is good for neutrino-
less decay) and with the usual assumption that the nuclear weak
current is adequately represented by a one-body operator, the
0νββ matrix element is a sum of three terms:

Mf i ≡ ⟨f |
∑

ab

MGT
ab + MF

ab + MT
ab |i⟩ , (1)

the last of which is a very small tensor piece [10] that will be
ignored here. The other two M’s are given by [10,11]

MGT
ab = HGT (rab) σ a · σ b,

(2)
MF

ab = HF (rab) ,

with the labels a and b indicating nucleons both here and
in Eq. (1), rab representing internucleon distance, and the

044316-10556-2813/2011/84(4)/044316(6) ©2011 American Physical Society
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Effective operators from exact many-body renormalization
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We construct effective two-body Hamiltonians and E2 operators for the p shell by performing 16h̄! ab initio
no-core shell model (NCSM) calculations for A = 5 and A = 6 nuclei and explicitly projecting the many-body
Hamiltonians and E2 operator onto the 0h̄! space. We then separate the effective E2 operator into one-body
and two-body contributions employing the two-body valence cluster approximation. We analyze the convergence
of proton and neutron valence one-body contributions with increasing model space size and explore the role of
valence two-body contributions. We show that the constructed effective E2 operator can be parametrized in terms
of one-body effective charges giving a good estimate of the NCSM result for heavier p-shell nuclei.
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I. INTRODUCTION

In recent years, ab initio many-body nuclear structure
calculations, such as the no-core shell model (NCSM) and
Green’s function Monte Carlo (GFMC), have significantly
progressed to realistically describe heavier and heavier nuclei
[1–7]. In the past few years, these calculations have been able to
reproduce observables of light atomic nuclei up to A = 14. To
deal with heavier nuclei (A ! 15), even at the current level of
accessible computing power, it is unavoidable to adopt model-
space restrictions that have to be accompanied by proper renor-
malization of bare NN and NNN interactions. Significant
efforts have been devoted to developing the coupled-cluster
theory with single and double excitations (CCSD) [8] and the
importance truncation scheme [9] and to recast the ab initio
NCSM approach by introducing a core and few-body valence
clusters [10]. Those studies are usually focused on binding
energies and nuclear excitation spectra. The electromagnetic
and semileptonic operators, however, have been studied less
frequently and less is known about their renormalization.
One of the recent studies [3], for example, shows that the
long-range quadrupole operator undergoes insufficiently weak
renormalization in the two-body cluster approximation. This
is in contrast to short-range strong interactions and short-range
operators, which are well renormalized, even in the two-body
cluster approximation.

To explore the role of higher-body correlations for proper
renormalization of the long-range E2 operator, we can use
the valence cluster expansion (VCE) considered in Ref. [10].
Because the effective p-shell interactions constructed in this
approximation account exactly for six-body correlations, it is
also possible to construct the effective two-body E2 operator
that accounts for those six-body cluster correlations.

In this article, we present a detailed study of the properties
of the effective E2 operator in the NCSM formalism when

*lisetsky@physics.arizona.edu

projected onto a single major shell. The construction of our
effective E2 operator, which acts in a 0h̄! valence space,
is achieved as follows. We first performed a Nmaxh̄! NCSM
calculation, for both 5Li and 5He, using the nonlocal CD-Bonn
potential [11]. This NCSM calculation uses as input the
effective interaction for 6Li, obtained in the two-body cluster
approximation. Here, Nmax corresponds to the total oscillator
quanta (N ) above the minimum configuration and varies from
2 to 16. After a renormalization to the Nmax = 0 space, the
resulting quadrupole moments and E2 matrix elements form
the one-body part of the effective E2 operator for the p shell.
A Nmaxh̄! 6Li NCSM calculation is then performed for the
same range of Nmax, as before. After a similar renormalization
to the Nmax = 0 space, the matrix elements of the E2 operator
in this case contain both one- and two-body parts. By using
the results from the 5Li and 5He calculations, we are able to
subtract the one-body contribution from the 6Li E2 matrix
elements and are left with the pure two-body contribution.
This step is necessary, as the effective operator will contain
two-body contributions, even though the bare operator does
not. We are, thus, able to construct an effective E2 operator
from the one- and two-body contributions as a function of
Nmax. We demonstrate that the two-body effective E2 operator
can conveniently be parametrized in terms of j -dependent
one-body effective charges. These effective charges account
exactly for the one-body contributions as well as averaged
two-body contributions.

II. APPROACH

A. No-core shell model formalism

The starting point of the NCSM approach is the bare, exact
A-body Hamiltonian with the addition (and later subtraction)
of the harmonic oscillator (HO) potential [1]:

H!
A =

A∑

j=1

h!
j +

A∑

j>i=1

Vij (!, A), (1)

0556-2813/2009/80(2)/024315(9) 024315-1 ©2009 The American Physical Society
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We construct effective two- and three-body Hamiltonians for the p-shell by performing 12h̄! ab initio no-core
shell model (NCSM) calculations for A = 6 and 7 nuclei and explicitly projecting the many-body Hamiltonians
onto the 0h̄! space. We then separate these effective Hamiltonians into inert core, one- and two-body contributions
(also three-body for A = 7) and analyze the systematic behavior of these different parts as a function of the mass
number A and size of the NCSM basis space. The role of effective three- and higher-body interactions for A > 6
is investigated and discussed.
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I. INTRODUCTION

Microscopic ab-initio many-body approaches have signif-
icantly progressed in recent years [1–9]. Nowadays, due to
increased computing power and novel techniques, ab-initio
calculations are able to reproduce a large number of observ-
ables for atomic nuclei with mass up to A = 14. The light
nuclei have also served as a crucial site to recognize the im-
portant role of three-body forces and three-body correlations.
Approaches like the no-core shell model (NCSM) [5,6], the
Green’s function Monte Carlo (GFMC) [7] and the coupled-
cluster theory with single and double excitations (CCSD) [9]
can be formally extended for heavier nuclei. However, the
explosive growth in computational power required to achieve
convergent results, severely hinders the detailed ab-initio
studies of heavier, A ! 16, nuclei. In the case of the NCSM,
the slow convergence of the calculated energies is caused by
the adoption of a two-body cluster approximation, so that
many-body correlations are taken into account only through
the diagonalization in a many-body space. Straightforward
employment of the three-body and higher-body interactions
dramatically complicates the problem, even for light nuclei.

An alternative approach is to construct a small-space
effective two-body interaction, which would account for the
many-body correlations for the A-body system in a large space.
Attempts to include many-body correlations approximately,
modifying the one-body part of the effective two-body Hamil-
tonian and employing a unitary transformation, have been
reported recently [10].

In this paper we derive a valence space (0h̄!) effective
two-body interaction that accounts for all the core-polarization
effects available in the ab-initio NCSM wave functions.

First, in the framework of the NCSM, we construct the
effective Hamiltonians on the two-body cluster level for A = 6
systems in the Nmaxh̄! space. Nmax represents the limit on the
total oscillator quanta (N ) above the minimum configuration.
We take Nmax values from 2 to 12. Second, following the

*lisetsky@physics.arizona.edu

original idea of Ref. [11], we employ an unitary many-body
transformation and obtain the effective two-body Hamiltonian
in the 0h̄! space (p-shell space), which exactly reproduces
the lowest, 0h̄! space dominated eigenstates of the six-body
Hamiltonian in the large Nmaxh̄! space. Third, we perform
NCSM calculations for A = 4 and A = 5 systems with the
effective Hamiltonian constructed on the two-body cluster
level for the A = 6 system and determine the core and one-
body parts of the effective two-body Hamiltonian for A = 6
in the p-shell space. Finally, the procedure is generalized
for arbitrary mass number A. We analyze the properties
of the constructed two-body Hamiltonians, investigate their
efficiency to reproduce the observables of different A-body
systems calculated in large Nmaxh̄! spaces and study the role
of the effective p-shell space three-body interaction.

II. APPROACH

A. No-core shell model and effective interaction

The starting point of the NCSM approach is the bare, exact
A-body Hamiltonian constrained by the harmonic oscillator
(HO) potential [6]:

H!
A =

A∑

j=1

h!
j +

A∑

j>i=1

Vij (!, A), (1)

where h!
j is the one-body HO Hamiltonian

h!
j =

p2
j

2m
+ 1

2
m!2r2

j (2)

and Vij (!, A) is a bare NN interaction V NN
ij modified by the

term introducing A- and !-dependent corrections to offset the
HO potential present in h!

j :

Vij (!, A) = V NN
ij − m!2

2A
(r⃗i − r⃗j )2. (3)

The eigenvalue problem for the exact A-body Hamiltonian (1)
for A > 3 is very complicated technically, since an extremely
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We derive and compute effective valence-space shell-model interactions from ab initio coupled-cluster
theory and apply them to open-shell and neutron-rich oxygen and carbon isotopes. Our shell-model
interactions are based on nucleon-nucleon and three-nucleon forces from chiral effective-field theory.
We compute the energies of ground and low-lying states, and find good agreement with experiment.
In particular, our computed 2þ states are consistent with N ¼ 14; 16 shell closures in 22;24O, and a weaker
N ¼ 14 shell closure in 20C. We find good agreement between our coupled-cluster effective-interaction
results with those obtained from standard single-reference coupled-cluster calculations for up to eight
valence neutrons.
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Introduction.—The nuclear shell model is the foundation
on which our understanding of nuclei is built. One of the
most important problems in nuclear structure today is to
understand how shell structure changes with neutron-to-
proton ratio throughout the nuclear chart. Shell structure
influences the locations of the neutron and proton drip lines
and the stability of matter. Examples of changes in shell
structure are the appearance of new magic numbersN ¼ 14
and N ¼ 16 in the neutron-rich oxygen isotopes [1,2], and
the emergence of an N ¼ 34 subshell closure in 54Ca [3–7].
Phenomenological shell-model Hamiltonians such as

the sd Hamiltonian of Brown and Wildenthal [8,9] (abbre-
viated USD) and the p-sd Hamiltonian of Warburton
and Brown [10] (abbreviated WBP), have successfully
described properties of nuclei with proton number Z and
neutron number N less than about 20. To understand the
origin of shell structure, however, researchers are now
trying to derive the shell model from realistic nucleon-
nucleon (NN) and three-nucleon forces (3NFs), without
further phenomenology [3,11,12]. Within the last few
years, for example, Otsuka et al. [12] showed that 3NFs
play a pivotal role in placing the drip line (correctly) in the
oxygen isotopes at 24O, and Holt et al. [3] showed that
inclusion of 3NFs can explain the high 2þ state in 48Ca.
Until recently, all work to compute effective shell-model

interactions was perturbative. Lately, however, nonpertur-
bative calculations have become possible. In Holt et al. [13]
core-polarization diagrams where summed to all orders,
others have been based on the ab initio no-core shell model
[14,15], via a valence-cluster expansion [16–18], and on
the in-medium similarity renormalization group [19]. In
this Letter we develop a new approach by using the ab initio
coupled-cluster method [20–25], to construct effective

shell-model interactions for use in open-shell and neutron-
rich nuclei. Starting from NN interactions and 3NFs
generated by chiral effective-field-theory, we compute
the ground- and excited-state energies of neutron-rich
carbon and oxygen isotopes with up to eight neutrons in
the valence space. Intense theoretical and experimental
interest surround the structure of both these isotope
chains, and particularly the neutron-rich carbon isotopes.
Separation energies, spin assignments for low-lying states,
the energies of 2þ states, and transition rates in these
isotopes all depend on the locations of shell gaps [26–33].
At present there is no evidence for a shell closure at the
N ¼ 14 nucleus 20C [34], despite the N ¼ 14 shell closure
at 22O. Furthermore, Efimov physics may be at play in 22C
[35,36]. This Letter takes the first steps towards an ab initio
shell-model description of the neutron-rich carbon isotopes,
and addresses the role of 3NFs in these isotopes.
Hamiltonian and model space.—Our coupled-cluster

calculations start from the intrinsic A-nucleon Hamiltonian,

Ĥ ¼
X

i<j

!ðpi − pjÞ2

2mA
þ V̂ði;jÞ

NN

"
þ

X

i<j<k

V̂ði;j;kÞ
3NF : ð1Þ

Here the intrinsic kinetic energy (the first term) depends on
the mass number A≡ Z þ N. The potential V̂NN denotes
the chiral NN interaction at next-to-next-to-next-to leading
order [37,38] (with cutoff Λ ¼ 500 MeV), and V̂3NF is the
3NF that enters at next-to-next-to leading order with a local
regulator [39] (with cutoff Λ3NF ¼ 400 MeV). The low-
energy constants of the 3NF are given by cE ¼ 0.098 and
cD ¼ −0.2. These were initially determined from a fit to the
triton half-life and binding energy with a cutoff Λ3NF ¼
500 MeV [40], and then, with Λ3NF ¼ 400 MeV, cE was
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“neutrino potentials” H defined by

HK (r) = 2R

πr

∫ ∞

0

hK (q) sin qr

q + ω̄
dq , K = GT,F. (3)

The hK (q) in Eq. (3) contain the vector and axial-vector
coupling constants, form factors that account for the finite size
of the nucleon, and the effects of forbidden currents (weak
magnetism and the induced pseudoscalar term). The quantity
ω̄ is an average intermediate-nucleus excitation energy to
which the HK are not very sensitive. The authors of Ref. [12]
recently applied chiral effective-field theory to derive two-
body corrections to the weak current and thus three-body
corrections to the operators in Eq. (2). From our point of
view, these corrections modify the bare 0νββ operator and are
subject to the same nuclear-structure renormalization that we
apply to the two-body operators in Eq. (2). We neglect the
chiral corrections here to keep matters simple.

The matrix element Mf i is often small because of cancel-
lations among contributions at different internucleon distances
rab. Instead of looking only at the matrix element, therefore,
we also examine the internucleon matrix-element distribution
C(r), defined, e.g., in Ref. [13], so that

∫ ∞

0
C(r) dr = Mf i . (4)

Our starting point for calculating matrix elements is the
NCSM. We use different starting interactions—the CD Bonn
potential [14] and the N3LO chiral effective-field-theory
interaction [15]—and model spaces that allow between six
and ten h̄ω of excitation energy outside the p shell (i.e., the
NCSM parameter Nmax is between 6 and 10). We first apply
standard Lee-Suzuki techniques [16–18] to the Bonn potential
and the similarity renormalization group (SRG) [19,20] to the
chiral potential to construct interactions appropriate for those
model spaces. In principle the double-β decay operator should
be treated in the same way. Preliminary studies [21] show,
however, that the renormalization is slight and confined to
short distances as expected; instead of carrying it out here
we simulate short-range effects through an effective Jastrow
function from Ref. [22].

Many of the isotopes we discuss are very weakly bound
or unbound in reality, and our representation of them in
the oscillator-based NCSM distorts their structure. For our
purposes, however, the poor representation is not important;
we want to examine the effect of moving to a much smaller
model space, and take the large-space calculations to be the
“exact” results we want to reproduce.

Our small model space consists of all but four particles
residing anywhere in the 0p shell and the rest forming an
inert 0s-shell core. As in Refs. [8,9], we first equate the
effective neutron p3/2 and p1/2 single-particle energies to the
two lowest-energy eigenvalues produced by the full calculation
in 5He, and the effective proton energies to the corresponding
eigenvalues in 5Li. Then in the A = 6 nuclei we use the Lee-
Suzuki procedure to map the two lowest J π = 0+ states, the
lowest 1+ state, and the two lowest 2+ states (all with T = 1)
onto corresponding orthogonal p-shell states. In doing so we
assume isospin conservation in our small-space calculation;

breaking isospin would require only the additional straightfor-
ward step of carrying out separate calculations in He and Be.

We implement the Lee-Suzuki mapping, which comes as
close as possible to making the p-shell energy eigenstates
the projections of the corresponding full-space states without
spoiling orthogonality, as follows. We let P project onto the
d-dimensional small space, let Q ≡ 1 − P , and denote by |p⟩,
|p′⟩, |p1⟩, etc., states for that are contained entirely in the small
space (with an analogous convention defining |q⟩, |q ′⟩, etc.).
The d orthogonal small-space states |k̃⟩ corresponding to d
selected full-space eigenstates |k⟩ are defined by

|k̃⟩ ≡ M− 1
2 (P + ω†) |k⟩ , (5)

with

⟨q| ω |p⟩ =
d−1∑

k=0

⟨q|k⟩ ⟨k|p⟩ (6)

and

M = P + ω†ω = P (1 + ω†ω)P. (7)

In Eq. (6) the ⟨k|p⟩ are defined as the elements of the inverse of
the matrix with the d2 elements ⟨p|k⟩. With these definitions
the effective operator Oeff in the dimension-d small space that
gives the same matrix elements as (the Tz = 0 analogue of)
the decay operator O in the full space is

Oeff = M− 1
2 (P + ω†)O(P + ω)M− 1

2 . (8)

The matrix elements of this operator can be written without
reference to any vectors |q⟩ or any of the eigenstates |k⟩ beyond
the d that are mapped, as

⟨p| Oeff |p′⟩ =
d−1∑

p1,p2,k,k′=0

⟨p| M− 1
2 |p1⟩ ⟨p1|k⟩ ⟨k| O |k′⟩

× ⟨k′|p2⟩ ⟨p2| M− 1
2 |p′⟩ , (9)

where the elements of M can be written in the same fashion as

⟨p| M |p′⟩ =
d−1∑

k=0

⟨p|k⟩ ⟨k|p′⟩ . (10)

With the Tz = 0 Oeff in place, we then simply use isospin
algebra to obtain the matrix elements of the real Tz = 2
effective decay operator, for which p represents two protons
and p′ two neutrons. To get the effective interaction we carry
out a similar procedure but also include the T = 0 states in 6Li
to obtain a complete set of matrix elements.

The Lee-Suzuki mapping actually is only one of many that
are possible. As noted above, the Lee-Suzuki procedure makes
the small-space eigenvectors as close as possible to projections
of the full eigenvectors without sacrificing orthogonality.
In other words, it constructs the orthonormal set {|k̃⟩} that
minimizes the quantity [23]

d−1∑

k=0

(⟨k| − ⟨k̃|)(|k⟩ − |k̃⟩). (11)

This prescription seems particularly appropriate for a compre-
hensive description of the spectrum, but in double-β decay we
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πr

∫ ∞

0

hK (q) sin qr

q + ω̄
dq , K = GT,F. (3)

The hK (q) in Eq. (3) contain the vector and axial-vector
coupling constants, form factors that account for the finite size
of the nucleon, and the effects of forbidden currents (weak
magnetism and the induced pseudoscalar term). The quantity
ω̄ is an average intermediate-nucleus excitation energy to
which the HK are not very sensitive. The authors of Ref. [12]
recently applied chiral effective-field theory to derive two-
body corrections to the weak current and thus three-body
corrections to the operators in Eq. (2). From our point of
view, these corrections modify the bare 0νββ operator and are
subject to the same nuclear-structure renormalization that we
apply to the two-body operators in Eq. (2). We neglect the
chiral corrections here to keep matters simple.

The matrix element Mf i is often small because of cancel-
lations among contributions at different internucleon distances
rab. Instead of looking only at the matrix element, therefore,
we also examine the internucleon matrix-element distribution
C(r), defined, e.g., in Ref. [13], so that

∫ ∞

0
C(r) dr = Mf i . (4)

Our starting point for calculating matrix elements is the
NCSM. We use different starting interactions—the CD Bonn
potential [14] and the N3LO chiral effective-field-theory
interaction [15]—and model spaces that allow between six
and ten h̄ω of excitation energy outside the p shell (i.e., the
NCSM parameter Nmax is between 6 and 10). We first apply
standard Lee-Suzuki techniques [16–18] to the Bonn potential
and the similarity renormalization group (SRG) [19,20] to the
chiral potential to construct interactions appropriate for those
model spaces. In principle the double-β decay operator should
be treated in the same way. Preliminary studies [21] show,
however, that the renormalization is slight and confined to
short distances as expected; instead of carrying it out here
we simulate short-range effects through an effective Jastrow
function from Ref. [22].

Many of the isotopes we discuss are very weakly bound
or unbound in reality, and our representation of them in
the oscillator-based NCSM distorts their structure. For our
purposes, however, the poor representation is not important;
we want to examine the effect of moving to a much smaller
model space, and take the large-space calculations to be the
“exact” results we want to reproduce.

Our small model space consists of all but four particles
residing anywhere in the 0p shell and the rest forming an
inert 0s-shell core. As in Refs. [8,9], we first equate the
effective neutron p3/2 and p1/2 single-particle energies to the
two lowest-energy eigenvalues produced by the full calculation
in 5He, and the effective proton energies to the corresponding
eigenvalues in 5Li. Then in the A = 6 nuclei we use the Lee-
Suzuki procedure to map the two lowest J π = 0+ states, the
lowest 1+ state, and the two lowest 2+ states (all with T = 1)
onto corresponding orthogonal p-shell states. In doing so we
assume isospin conservation in our small-space calculation;

breaking isospin would require only the additional straightfor-
ward step of carrying out separate calculations in He and Be.

We implement the Lee-Suzuki mapping, which comes as
close as possible to making the p-shell energy eigenstates
the projections of the corresponding full-space states without
spoiling orthogonality, as follows. We let P project onto the
d-dimensional small space, let Q ≡ 1 − P , and denote by |p⟩,
|p′⟩, |p1⟩, etc., states for that are contained entirely in the small
space (with an analogous convention defining |q⟩, |q ′⟩, etc.).
The d orthogonal small-space states |k̃⟩ corresponding to d
selected full-space eigenstates |k⟩ are defined by

|k̃⟩ ≡ M− 1
2 (P + ω†) |k⟩ , (5)

with

⟨q| ω |p⟩ =
d−1∑

k=0

⟨q|k⟩ ⟨k|p⟩ (6)

and

M = P + ω†ω = P (1 + ω†ω)P. (7)

In Eq. (6) the ⟨k|p⟩ are defined as the elements of the inverse of
the matrix with the d2 elements ⟨p|k⟩. With these definitions
the effective operator Oeff in the dimension-d small space that
gives the same matrix elements as (the Tz = 0 analogue of)
the decay operator O in the full space is

Oeff = M− 1
2 (P + ω†)O(P + ω)M− 1

2 . (8)

The matrix elements of this operator can be written without
reference to any vectors |q⟩ or any of the eigenstates |k⟩ beyond
the d that are mapped, as

⟨p| Oeff |p′⟩ =
d−1∑

p1,p2,k,k′=0

⟨p| M− 1
2 |p1⟩ ⟨p1|k⟩ ⟨k| O |k′⟩

× ⟨k′|p2⟩ ⟨p2| M− 1
2 |p′⟩ , (9)

where the elements of M can be written in the same fashion as

⟨p| M |p′⟩ =
d−1∑

k=0

⟨p|k⟩ ⟨k|p′⟩ . (10)

With the Tz = 0 Oeff in place, we then simply use isospin
algebra to obtain the matrix elements of the real Tz = 2
effective decay operator, for which p represents two protons
and p′ two neutrons. To get the effective interaction we carry
out a similar procedure but also include the T = 0 states in 6Li
to obtain a complete set of matrix elements.

The Lee-Suzuki mapping actually is only one of many that
are possible. As noted above, the Lee-Suzuki procedure makes
the small-space eigenvectors as close as possible to projections
of the full eigenvectors without sacrificing orthogonality.
In other words, it constructs the orthonormal set {|k̃⟩} that
minimizes the quantity [23]

d−1∑

k=0

(⟨k| − ⟨k̃|)(|k⟩ − |k̃⟩). (11)

This prescription seems particularly appropriate for a compre-
hensive description of the spectrum, but in double-β decay we
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I. INTRODUCTION

Particle physicists hope to learn about the overall neutrino-
mass scale by observing neutrinoless double-beta (0νββ)
decay [1]. To extract a mass from a lifetime, however, one must
know the value of the nuclear matrix element that governs the
decay. For that reason, theorists have worked hard over the last
20 years to better calculate the matrix elements.

One of the best frameworks for the job at present is the
nuclear shell model. Good calculations (e.g., Refs. [2,3]) use
model spaces of dimension 107 or larger by including the full
valence shell. Even these calculations, however, omit most of
the relevant many-particle Hilbert space by requiring that most
particles remain frozen in an inert core and prohibiting even
active particles from sampling levels above the valence shell.
These approximations induce error that can in principle be
accounted for through the use of an effective Hamiltonian and
decay operator. The literature contains a number of schemes
for constructing effective operators [4,5]. In practice, however,
such techniques are generally restricted to the effective Hamil-
tonian, and even there the application is usually through a
perturbative scheme whose weaknesses must be compensated
for by fitting to spectra. The decay operator is usually not
corrected at all, except at short distances (and sometimes
through an overall phenomenological multiplication factor).
How much are calculated matrix-element corrupted as a result?
How might one do better?

To begin to answer these questions, we look at the 0νββ
matrix element in nuclei with mass number A between 6 and
10. Such nuclei, of course, do not undergo ββ decay, but
one can calculate the matrix elements nonetheless. Moreover,
in these nuclei we can carry out fairly complete no-core
shell-model (NCSM) [6] calculations and map their results
onto valence-shell (p-shell) calculations to construct effective
operators that reproduce the full matrix elements exactly. We
can then bypass perturbation theory, which is often unreliable
(and was applied inconclusively to ββ decay in Ref. [7]),

and test nonperturbative approximations to the full effective
operator. References [8,9] carried out this program for charge-
conserving electromagnetic transition operators, the leading
pieces of which are one-body. Here, the lowest-order effective
decay operator acts on two bodies, and we examine the
restriction to this leading term. We define effective operators
that reproduce the exact matrix element for the artificial
decay of states in 6He to those in 6Be. Are these operators
significantly different from their bare counterparts? Can they
also reproduce 0νββ matrix elements in heavier nuclei, or are
three- and higher-body effective operators necessary as well?
The answers will provide a good idea of how much work awaits
us in the heavier nuclei that actually undergo ββ decay.

In Sec. II below, we describe the concepts and methods we
employ. Section III presents our results, and Sec. IV discusses
their implications for matrix elements in the heavier nuclei that
are used in ββ experiments.

II. METHODS

In the closure approximation (which is good for neutrino-
less decay) and with the usual assumption that the nuclear weak
current is adequately represented by a one-body operator, the
0νββ matrix element is a sum of three terms:

Mf i ≡ ⟨f |
∑

ab

MGT
ab + MF

ab + MT
ab |i⟩ , (1)

the last of which is a very small tensor piece [10] that will be
ignored here. The other two M’s are given by [10,11]

MGT
ab = HGT (rab) σ a · σ b,

(2)
MF

ab = HF (rab) ,

with the labels a and b indicating nucleons both here and
in Eq. (1), rab representing internucleon distance, and the
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such techniques are generally restricted to the effective Hamil-
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for by fitting to spectra. The decay operator is usually not
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through an overall phenomenological multiplication factor).
How much are calculated matrix-element corrupted as a result?
How might one do better?

To begin to answer these questions, we look at the 0νββ
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shell-model (NCSM) [6] calculations and map their results
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can then bypass perturbation theory, which is often unreliable
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and test nonperturbative approximations to the full effective
operator. References [8,9] carried out this program for charge-
conserving electromagnetic transition operators, the leading
pieces of which are one-body. Here, the lowest-order effective
decay operator acts on two bodies, and we examine the
restriction to this leading term. We define effective operators
that reproduce the exact matrix element for the artificial
decay of states in 6He to those in 6Be. Are these operators
significantly different from their bare counterparts? Can they
also reproduce 0νββ matrix elements in heavier nuclei, or are
three- and higher-body effective operators necessary as well?
The answers will provide a good idea of how much work awaits
us in the heavier nuclei that actually undergo ββ decay.
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are used in ββ experiments.

II. METHODS
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“neutrino potentials” H defined by

HK (r) = 2R

πr

∫ ∞

0

hK (q) sin qr

q + ω̄
dq , K = GT,F. (3)

The hK (q) in Eq. (3) contain the vector and axial-vector
coupling constants, form factors that account for the finite size
of the nucleon, and the effects of forbidden currents (weak
magnetism and the induced pseudoscalar term). The quantity
ω̄ is an average intermediate-nucleus excitation energy to
which the HK are not very sensitive. The authors of Ref. [12]
recently applied chiral effective-field theory to derive two-
body corrections to the weak current and thus three-body
corrections to the operators in Eq. (2). From our point of
view, these corrections modify the bare 0νββ operator and are
subject to the same nuclear-structure renormalization that we
apply to the two-body operators in Eq. (2). We neglect the
chiral corrections here to keep matters simple.

The matrix element Mf i is often small because of cancel-
lations among contributions at different internucleon distances
rab. Instead of looking only at the matrix element, therefore,
we also examine the internucleon matrix-element distribution
C(r), defined, e.g., in Ref. [13], so that

∫ ∞

0
C(r) dr = Mf i . (4)

Our starting point for calculating matrix elements is the
NCSM. We use different starting interactions—the CD Bonn
potential [14] and the N3LO chiral effective-field-theory
interaction [15]—and model spaces that allow between six
and ten h̄ω of excitation energy outside the p shell (i.e., the
NCSM parameter Nmax is between 6 and 10). We first apply
standard Lee-Suzuki techniques [16–18] to the Bonn potential
and the similarity renormalization group (SRG) [19,20] to the
chiral potential to construct interactions appropriate for those
model spaces. In principle the double-β decay operator should
be treated in the same way. Preliminary studies [21] show,
however, that the renormalization is slight and confined to
short distances as expected; instead of carrying it out here
we simulate short-range effects through an effective Jastrow
function from Ref. [22].

Many of the isotopes we discuss are very weakly bound
or unbound in reality, and our representation of them in
the oscillator-based NCSM distorts their structure. For our
purposes, however, the poor representation is not important;
we want to examine the effect of moving to a much smaller
model space, and take the large-space calculations to be the
“exact” results we want to reproduce.

Our small model space consists of all but four particles
residing anywhere in the 0p shell and the rest forming an
inert 0s-shell core. As in Refs. [8,9], we first equate the
effective neutron p3/2 and p1/2 single-particle energies to the
two lowest-energy eigenvalues produced by the full calculation
in 5He, and the effective proton energies to the corresponding
eigenvalues in 5Li. Then in the A = 6 nuclei we use the Lee-
Suzuki procedure to map the two lowest J π = 0+ states, the
lowest 1+ state, and the two lowest 2+ states (all with T = 1)
onto corresponding orthogonal p-shell states. In doing so we
assume isospin conservation in our small-space calculation;

breaking isospin would require only the additional straightfor-
ward step of carrying out separate calculations in He and Be.

We implement the Lee-Suzuki mapping, which comes as
close as possible to making the p-shell energy eigenstates
the projections of the corresponding full-space states without
spoiling orthogonality, as follows. We let P project onto the
d-dimensional small space, let Q ≡ 1 − P , and denote by |p⟩,
|p′⟩, |p1⟩, etc., states for that are contained entirely in the small
space (with an analogous convention defining |q⟩, |q ′⟩, etc.).
The d orthogonal small-space states |k̃⟩ corresponding to d
selected full-space eigenstates |k⟩ are defined by

|k̃⟩ ≡ M− 1
2 (P + ω†) |k⟩ , (5)

with

⟨q| ω |p⟩ =
d−1∑

k=0

⟨q|k⟩ ⟨k|p⟩ (6)

and

M = P + ω†ω = P (1 + ω†ω)P. (7)

In Eq. (6) the ⟨k|p⟩ are defined as the elements of the inverse of
the matrix with the d2 elements ⟨p|k⟩. With these definitions
the effective operator Oeff in the dimension-d small space that
gives the same matrix elements as (the Tz = 0 analogue of)
the decay operator O in the full space is

Oeff = M− 1
2 (P + ω†)O(P + ω)M− 1

2 . (8)

The matrix elements of this operator can be written without
reference to any vectors |q⟩ or any of the eigenstates |k⟩ beyond
the d that are mapped, as

⟨p| Oeff |p′⟩ =
d−1∑

p1,p2,k,k′=0

⟨p| M− 1
2 |p1⟩ ⟨p1|k⟩ ⟨k| O |k′⟩

× ⟨k′|p2⟩ ⟨p2| M− 1
2 |p′⟩ , (9)

where the elements of M can be written in the same fashion as

⟨p| M |p′⟩ =
d−1∑

k=0

⟨p|k⟩ ⟨k|p′⟩ . (10)

With the Tz = 0 Oeff in place, we then simply use isospin
algebra to obtain the matrix elements of the real Tz = 2
effective decay operator, for which p represents two protons
and p′ two neutrons. To get the effective interaction we carry
out a similar procedure but also include the T = 0 states in 6Li
to obtain a complete set of matrix elements.

The Lee-Suzuki mapping actually is only one of many that
are possible. As noted above, the Lee-Suzuki procedure makes
the small-space eigenvectors as close as possible to projections
of the full eigenvectors without sacrificing orthogonality.
In other words, it constructs the orthonormal set {|k̃⟩} that
minimizes the quantity [23]

d−1∑

k=0

(⟨k| − ⟨k̃|)(|k⟩ − |k̃⟩). (11)

This prescription seems particularly appropriate for a compre-
hensive description of the spectrum, but in double-β decay we
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lations among contributions at different internucleon distances
rab. Instead of looking only at the matrix element, therefore,
we also examine the internucleon matrix-element distribution
C(r), defined, e.g., in Ref. [13], so that

∫ ∞

0
C(r) dr = Mf i . (4)

Our starting point for calculating matrix elements is the
NCSM. We use different starting interactions—the CD Bonn
potential [14] and the N3LO chiral effective-field-theory
interaction [15]—and model spaces that allow between six
and ten h̄ω of excitation energy outside the p shell (i.e., the
NCSM parameter Nmax is between 6 and 10). We first apply
standard Lee-Suzuki techniques [16–18] to the Bonn potential
and the similarity renormalization group (SRG) [19,20] to the
chiral potential to construct interactions appropriate for those
model spaces. In principle the double-β decay operator should
be treated in the same way. Preliminary studies [21] show,
however, that the renormalization is slight and confined to
short distances as expected; instead of carrying it out here
we simulate short-range effects through an effective Jastrow
function from Ref. [22].

Many of the isotopes we discuss are very weakly bound
or unbound in reality, and our representation of them in
the oscillator-based NCSM distorts their structure. For our
purposes, however, the poor representation is not important;
we want to examine the effect of moving to a much smaller
model space, and take the large-space calculations to be the
“exact” results we want to reproduce.

Our small model space consists of all but four particles
residing anywhere in the 0p shell and the rest forming an
inert 0s-shell core. As in Refs. [8,9], we first equate the
effective neutron p3/2 and p1/2 single-particle energies to the
two lowest-energy eigenvalues produced by the full calculation
in 5He, and the effective proton energies to the corresponding
eigenvalues in 5Li. Then in the A = 6 nuclei we use the Lee-
Suzuki procedure to map the two lowest J π = 0+ states, the
lowest 1+ state, and the two lowest 2+ states (all with T = 1)
onto corresponding orthogonal p-shell states. In doing so we
assume isospin conservation in our small-space calculation;

breaking isospin would require only the additional straightfor-
ward step of carrying out separate calculations in He and Be.

We implement the Lee-Suzuki mapping, which comes as
close as possible to making the p-shell energy eigenstates
the projections of the corresponding full-space states without
spoiling orthogonality, as follows. We let P project onto the
d-dimensional small space, let Q ≡ 1 − P , and denote by |p⟩,
|p′⟩, |p1⟩, etc., states for that are contained entirely in the small
space (with an analogous convention defining |q⟩, |q ′⟩, etc.).
The d orthogonal small-space states |k̃⟩ corresponding to d
selected full-space eigenstates |k⟩ are defined by

|k̃⟩ ≡ M− 1
2 (P + ω†) |k⟩ , (5)

with

⟨q| ω |p⟩ =
d−1∑

k=0

⟨q|k⟩ ⟨k|p⟩ (6)

and

M = P + ω†ω = P (1 + ω†ω)P. (7)

In Eq. (6) the ⟨k|p⟩ are defined as the elements of the inverse of
the matrix with the d2 elements ⟨p|k⟩. With these definitions
the effective operator Oeff in the dimension-d small space that
gives the same matrix elements as (the Tz = 0 analogue of)
the decay operator O in the full space is

Oeff = M− 1
2 (P + ω†)O(P + ω)M− 1

2 . (8)

The matrix elements of this operator can be written without
reference to any vectors |q⟩ or any of the eigenstates |k⟩ beyond
the d that are mapped, as

⟨p| Oeff |p′⟩ =
d−1∑

p1,p2,k,k′=0

⟨p| M− 1
2 |p1⟩ ⟨p1|k⟩ ⟨k| O |k′⟩

× ⟨k′|p2⟩ ⟨p2| M− 1
2 |p′⟩ , (9)

where the elements of M can be written in the same fashion as

⟨p| M |p′⟩ =
d−1∑

k=0

⟨p|k⟩ ⟨k|p′⟩ . (10)

With the Tz = 0 Oeff in place, we then simply use isospin
algebra to obtain the matrix elements of the real Tz = 2
effective decay operator, for which p represents two protons
and p′ two neutrons. To get the effective interaction we carry
out a similar procedure but also include the T = 0 states in 6Li
to obtain a complete set of matrix elements.

The Lee-Suzuki mapping actually is only one of many that
are possible. As noted above, the Lee-Suzuki procedure makes
the small-space eigenvectors as close as possible to projections
of the full eigenvectors without sacrificing orthogonality.
In other words, it constructs the orthonormal set {|k̃⟩} that
minimizes the quantity [23]

d−1∑

k=0

(⟨k| − ⟨k̃|)(|k⟩ − |k̃⟩). (11)

This prescription seems particularly appropriate for a compre-
hensive description of the spectrum, but in double-β decay we
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∫ ∞

0
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q + ω̄
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the matrix with the d2 elements ⟨p|k⟩. With these definitions
the effective operator Oeff in the dimension-d small space that
gives the same matrix elements as (the Tz = 0 analogue of)
the decay operator O in the full space is

Oeff = M− 1
2 (P + ω†)O(P + ω)M− 1
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The matrix elements of this operator can be written without
reference to any vectors |q⟩ or any of the eigenstates |k⟩ beyond
the d that are mapped, as

⟨p| Oeff |p′⟩ =
d−1∑

p1,p2,k,k′=0

⟨p| M− 1
2 |p1⟩ ⟨p1|k⟩ ⟨k| O |k′⟩

× ⟨k′|p2⟩ ⟨p2| M− 1
2 |p′⟩ , (9)

where the elements of M can be written in the same fashion as

⟨p| M |p′⟩ =
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With the Tz = 0 Oeff in place, we then simply use isospin
algebra to obtain the matrix elements of the real Tz = 2
effective decay operator, for which p represents two protons
and p′ two neutrons. To get the effective interaction we carry
out a similar procedure but also include the T = 0 states in 6Li
to obtain a complete set of matrix elements.

The Lee-Suzuki mapping actually is only one of many that
are possible. As noted above, the Lee-Suzuki procedure makes
the small-space eigenvectors as close as possible to projections
of the full eigenvectors without sacrificing orthogonality.
In other words, it constructs the orthonormal set {|k̃⟩} that
minimizes the quantity [23]
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This prescription seems particularly appropriate for a compre-
hensive description of the spectrum, but in double-β decay we
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are not equally interested in all states. One alternative, known
as the contractor renormalization (CORE) mapping [24], is to
make the small-space ground state |0̃⟩ proportional to P |0⟩,
the projection of the full ground state, and then construct
the other |k̃⟩ from the set P |k⟩ through Graham-Schmidt
orthogonalization. But in fact any unitary transformation of
the |k̃⟩’s generated by the Lee-Suzuki procedure defines a
valid mapping. In our case, we can generate an arbitrary
time-reversal-preserving transformation by rotating the two
small-space 0+ states in A = 6 by an arbitrary angle α and the
two 2+ states by another angle β. We will try to see whether
there are values of these angles that are particularly suited for
double-β decay.

III. RESULTS

We now test the performance of our Lee-Suzuki effective
operator in heavier nuclei. Figure 1 presents our results for
the decays 7,8,10He→7,8,10Be when we use the SRG-evolved
chiral N3LO ( [15]) interaction in a 6h̄ω full space. The black
(solid) curves in each of the panels denote the full Nmax =
6 0νββ distributions C(r). These curves are what the effective
operators are supposed to reproduce. The red (dashed) curves
denote the results obtained with the bare 0νββ operator in the p
shell, with wave functions produced by the effective p-shell in-
teraction, which in turn comes from the Lee-Suzuki procedure
for A = 5 and 6 discussed above. The blue (dot-dashed) curves
are the results with the effective operator, used in conjunction
with the wave functions from the same effective interaction.

The use of the effective decay operator clearly improves
the agreement between the p-shell C(r) and the full one in
all three panels. One problem, however, is that C(r) is not
itself measurable; its integral is what we want. And it turns out
that oscillations can make apparent poor agreement between
curves much better in the integral, and good agreement worse.
Table I compares the matrix elements themselves for the three
decays represented by the figure.

The effective operator produces a clear improvement in
the integrated matrix element in A = 7 and (particularly) 8,
but by A = 10 the bare operator does pretty well and the
effective operator not as well. The reason is apparent from the
bottom panel of Fig. 1: the effective-operator curve, while a
better approximation than the bare curve, is not as good when
integrated because because it is above the full curve until about
r ∼ 4 fm. The bare curve strays from the full curve at both the
peak and dip but in opposite directions; it thus supplies a good
approximation when integrated.

Is this behavior a fluke? Does it depend on the shell-model
interaction or the size of the full model space? To address
these questions we repeated our calculations with different
interactions and model spaces. In A = 7, the effective operator
is always a decided improvement but in A = 8 and 10 the
results are more ambiguous. Figure 2 and Table II present
results of calculations in a Nmax = 8 space with the CD-Bonn
interaction, conditioned as described in section II for A = 8
and 10. (We do not show A = 7, and the size of the problem in
10Be limits us to Nmax = 6 in A = 10.) Once again the effective
operator appears to be an improvement in both cases, but now,
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FIG. 1. (Color online) The curves C(r), the integrals of which
give the matrix elements for neutrinoless double-β decay. The solid
(black) lines are the results of the full (Nmax = 6) calculations with the
SRG-evolved N3LO potential, the dashed (red) lines are the results of
the p-shell calculation with the effective two-body Hamiltonian and
the bare decay operator, and the dot-dashed (blue) lines are the results
with the effective Hamiltonian and the effective decay operator. The
top panel is for the decay 7He → 7Be, the middle panel for 8He
→ 8Be, and the bottom panel for 10He → 10Be.

as Table II shows, the effective-operator curve for A = 8 can-
cels itself too much in the integral. And in A = 10 the effective
operator does better than the figure indicates it should.

One might expect the procedure to work better when the
full model space is smaller, and/or when the full results differ

TABLE I. Matrix elements Mf i produced by the distributions
C(r) in Fig. 1.

7 8 10

full 1.76 0.48 0.79
bare 1.49 0.18 0.91
effective 1.90 0.59 1.23
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are not equally interested in all states. One alternative, known
as the contractor renormalization (CORE) mapping [24], is to
make the small-space ground state |0̃⟩ proportional to P |0⟩,
the projection of the full ground state, and then construct
the other |k̃⟩ from the set P |k⟩ through Graham-Schmidt
orthogonalization. But in fact any unitary transformation of
the |k̃⟩’s generated by the Lee-Suzuki procedure defines a
valid mapping. In our case, we can generate an arbitrary
time-reversal-preserving transformation by rotating the two
small-space 0+ states in A = 6 by an arbitrary angle α and the
two 2+ states by another angle β. We will try to see whether
there are values of these angles that are particularly suited for
double-β decay.

III. RESULTS

We now test the performance of our Lee-Suzuki effective
operator in heavier nuclei. Figure 1 presents our results for
the decays 7,8,10He→7,8,10Be when we use the SRG-evolved
chiral N3LO ( [15]) interaction in a 6h̄ω full space. The black
(solid) curves in each of the panels denote the full Nmax =
6 0νββ distributions C(r). These curves are what the effective
operators are supposed to reproduce. The red (dashed) curves
denote the results obtained with the bare 0νββ operator in the p
shell, with wave functions produced by the effective p-shell in-
teraction, which in turn comes from the Lee-Suzuki procedure
for A = 5 and 6 discussed above. The blue (dot-dashed) curves
are the results with the effective operator, used in conjunction
with the wave functions from the same effective interaction.

The use of the effective decay operator clearly improves
the agreement between the p-shell C(r) and the full one in
all three panels. One problem, however, is that C(r) is not
itself measurable; its integral is what we want. And it turns out
that oscillations can make apparent poor agreement between
curves much better in the integral, and good agreement worse.
Table I compares the matrix elements themselves for the three
decays represented by the figure.

The effective operator produces a clear improvement in
the integrated matrix element in A = 7 and (particularly) 8,
but by A = 10 the bare operator does pretty well and the
effective operator not as well. The reason is apparent from the
bottom panel of Fig. 1: the effective-operator curve, while a
better approximation than the bare curve, is not as good when
integrated because because it is above the full curve until about
r ∼ 4 fm. The bare curve strays from the full curve at both the
peak and dip but in opposite directions; it thus supplies a good
approximation when integrated.

Is this behavior a fluke? Does it depend on the shell-model
interaction or the size of the full model space? To address
these questions we repeated our calculations with different
interactions and model spaces. In A = 7, the effective operator
is always a decided improvement but in A = 8 and 10 the
results are more ambiguous. Figure 2 and Table II present
results of calculations in a Nmax = 8 space with the CD-Bonn
interaction, conditioned as described in section II for A = 8
and 10. (We do not show A = 7, and the size of the problem in
10Be limits us to Nmax = 6 in A = 10.) Once again the effective
operator appears to be an improvement in both cases, but now,
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(black) lines are the results of the full (Nmax = 6) calculations with the
SRG-evolved N3LO potential, the dashed (red) lines are the results of
the p-shell calculation with the effective two-body Hamiltonian and
the bare decay operator, and the dot-dashed (blue) lines are the results
with the effective Hamiltonian and the effective decay operator. The
top panel is for the decay 7He → 7Be, the middle panel for 8He
→ 8Be, and the bottom panel for 10He → 10Be.

as Table II shows, the effective-operator curve for A = 8 can-
cels itself too much in the integral. And in A = 10 the effective
operator does better than the figure indicates it should.

One might expect the procedure to work better when the
full model space is smaller, and/or when the full results differ

TABLE I. Matrix elements Mf i produced by the distributions
C(r) in Fig. 1.

7 8 10

full 1.76 0.48 0.79
bare 1.49 0.18 0.91
effective 1.90 0.59 1.23
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Conclusions and Outlook 

 

•  Possible contribution to the neutrinoless double beta decay: 
–  Renormalization of the transition operator to account for the short-range 

correlations using the SRG evolution 
–  Renormalization to account for the valence-space truncation using the Okubo-

Lee-Suzuki transformation and/or valence space IM-SRG 
–  Benchmark calculations in 48Ca and beyond 

•  Ab initio calculations of nuclear structure and reactions is a dynamic field 
with significant advances  
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