

In-Trap Spectroscopy at TITAN for NME Calculations

Thomas Brunner for the TITAN collaboration

LABORATOIRE NATIONAL CANADIEN POUR LA RECHERCHE EN PHYSIQUE NUCLÉAIRE ET EN PHYSIQUE DES PARTICULES

Propriété d'un consortium d'universités canadiennes, géré en co-entreprise à partir d'une contribution administrée par le Conseil national de recherches Canada

EC-BR Motivation

- Experimental data required to test theoretical models describing $\beta\beta$
- (Only) $2\nu\beta\beta$ accessible experimentally

 \rightarrow testing ground for nuclear models

• ECBRs provide information about g.s. properties of the nucl. wave function connected to $\beta\beta$ decay ($2\nu\beta\beta$, $0\nu\beta\beta$)

$$M^{2\nu} \propto \sum_{m} \frac{\left\langle 0_{g.s.}^{f} \left| \hat{O} \right| 1_{m}^{+} \right\rangle \left\langle 1_{m}^{+} \left| \hat{O} \right| 0_{g.s.}^{i} \right\rangle}{E_{m} - E_{i} + Q_{\beta\beta} / 2}$$

Single-State Dominance hypothesis

Transition via lowest 1⁺ state in intermediate nucleus accounts for entire $M^{2\nu}$

D. Fang et al., Phys. Rev. C 81(2010)037303

Physics case ¹⁰⁰Mo

- (³He,t) measurement by Ejiri et al. in 1998 with $\Delta E = 300 \text{ keV}$
- \rightarrow B(GT)(g.s.) = 0.33(4)
- Recent (³He,t) measurement by Thies et. al. with $\Delta E = 29 \text{ keV}$
- \rightarrow B(GT)(g.s) = 0.35(1)
- <u>In conflict</u> with BR(EC) measurement from ¹⁰⁰Tc by Sjue et.al.
- \rightarrow B(GT) = 0.60(9)

Challenges in EC BR measurements

Challenges

- Difficult measurement due to a weak EC branch and difficult x-ray signatures
- High background due to dominating beta decay and possible bremsstrahlung
- Isobaric contamination

New approach using a Penning trap (Frekers et al., Can. J. Phys 85(2007)57)

5/13/2016

Thomas Brunner

Basic concept of TITAN-EC

TITAN-EC detector configuration

Leach et al., NIMA 780(2015)91

Acceptance ~2.1%

- **Advantages of the TITAN-EC program:**
- Pure and intense ion beams from ISAC
- No isobaric contamination of the sample
- No X-ray absorption
- Open trap access for 7 X-ray detectors
- Shielded detectors
- Spatial separation of X-rays and β^- by B-field
- \rightarrow Potential to measure weak ECBRs (10⁻⁴)

- Production of rare ion
- Irradiation of thick production target with proton beam

TITAN TRIUMF's Ion Trap for Atomic and Nuclear science

- Xe X-rays dominant towards longer T_{trap}
- T_{1/2} determination possible

Half-lives

- Measured T_{1/2} confirm lit. values
- Accuracy increased for ^{124m}In & ^{124m}Cs
- \rightarrow Efficient trapping for order of minutes
- \rightarrow Understand background

- Calculate N_{ions} in the trap via activity at t_{decay}=0s
- \rightarrow Information about transport eff.
- → Calculate beam composition: ^{124m}Cs 3%, ¹²⁴Cs 65%, and ^{124m}In 32%

Atomic structure effects in highly-charged ions

- Charge breeding → atomic structure is altered Electron correlation, relativistic & quantum electrodynamical effects
- Electronic-binding energies get larger with increased charge state
- → Atomic spectrum varies with the electronic configuration
- → Ionization-energy shift
- Multiconfigurational Dirac-Fock code **FAC** (flexible atomic code)

Calculate atomic collisional & radiative processes

Non-relativistic Coulomb interaction operator

single electron Dirac operator for the ith electron in the potential field of the nucleus

Slide courtesy of A. Lennarz

X-ray energy shifts and intensity ratios

Observed K-shell X-ray energy shift Consistent with FAC calculation

Species	Shift [eV]	FAC	
Xe	96(37)	92	
Cs	120(34)	111	
Sn	139(34)	143	

In low-energy X-ray: Accuracy 50 eV ≈1.1 keV spectral resolution

X-ray intensity ratios

cies	K α /K β exp.	K α /K β neut.	Kα/K β no K β_2
	4.95(66)	4.69(11)	5.63(13)
	4.48(37)	4.63(10)	5.58(13)
	5.01(49)	4.91(11)	5.80(13)

Stripping N-shell

→ $K_{\beta 2}$ transition is non-existent Expected is an increased K α /K β ratio <u>BUT:</u> Measured K α /K β X-ray intensity ratio is consistent with neutral atom

<u>Neutral atoms</u>: Auger effect competes with X-ray emission & limits emission probability of K β X-rays.

- <u>Highly charged ions</u>: Fewer electrons, Auger effect reduced
- Emission probabilities change \rightarrow higher K_{B13} intensity.

5/13/2016

Slide courtesy of

A. Lennarz

¹¹⁶In – first attempt of a physics

¹¹⁶In – Multiple ion-bunch injection

Summary

- TITAN-EC is a powerful technique to measure weak EC branches
- Successful commissioning of technique with ¹²⁴Cs
- Technique suited for atomic spectroscopy measurements
- Beam purification from isobaric contamination coming soon (MR-TOF)
- ¹¹⁶In planned for fall 2016 (TRIUMF proposal S1622)

	ββ-nucleus	Interm. nucleus	transition	T _{1/2}	K _α -energy (keV)	
SSD	¹⁰⁰ Mo	¹⁰⁰ Tc (EC)	1+→0+	15.8 s	17.5	
	¹¹⁰ Pd	¹¹⁰ Ag (EC)	1+→0+	24.6 s	21.2	Input from theorists required:
	¹¹⁴ Cd	¹¹⁴ ln (EC)	1+→0+	71.9 s	25.3	Prioritize isotopes in list
SSD	¹¹⁶ Cd	¹¹⁶ In (EC)	1+→0+	14.1 s	25.3	 Suggest different isotopes Suggest different
	⁸² Se	^{82m} Br (EC)	2-→0+	6.1 min	11.2	experiment
	¹²⁸ Te	¹²⁸ I (EC)	1+→0+	25.0 min	27.5	
	⁷⁶ Ge	⁷⁶ As (EC)	2-→0+	26.2 h	9.9	17

Candidates for TITAN-EC

Acknowledgements – Thanks to the TITAN group!

M. Alanssari, C. Andreoiu, J. Bale, B. Barquest, T. Brunner, U. Chowdhury, J. Dilling, J. Even, A. Finlay, D. Frekers, A. T. Gallant, M. Good, **A. Großheim,** R. Klawitter, B. Kootte, A. A. Kwiatkowski, D. Lascar, **K. G. Leach, A. Lennarz,** E. Leistenschneider, T. D. Macdonald, B. Schultz, R. Schupp S. Seeraji, M. Simon, D. Short, ... and the TITAN collaboration

