

Putting together the pieces of the puzzle in ßß-decay

TRIUMF May-2016

The pieces of the puzzle Chargex-reactions (³He,t) & (d,²He) 2vββ nuclear matrix elements Q: is it relevant for 0vββ-decay?

> A: yes! (i.e. nucl. shape)

><u>Chargex-reactions</u>

- $> 0\nu\beta\beta$ nuclear matrix element
- > Q: is it possible?

A: yes! (NME's & 2⁻ states, occupation #'s)

(PRL116, Feb-2016)

><u>Mass measurements</u>

- $> 0\nu\beta\beta$ nuclear matrix element
- > Q: what is the connection?
- A: ⁹⁶Zr is a "golden" case
 ⁹⁶Zr (β⁻) 4u ⁹⁶Nb, and g_A

q-transfer like in ordinary β -decay (q ~ 0.01 fm⁻¹ ~ 2 MeV/c) i.e. only allowed transitions possible

$$M_{\text{DGT}}^{(2\nu)} = \sum_{m} \frac{\left\langle \mathbf{0}_{g.s.}^{(f)} \left| \sum_{k} \sigma_{k} \tau_{k}^{-} \left| \mathbf{1}_{m}^{+} \right\rangle \left\langle \mathbf{1}_{m}^{+} \left| \sum_{k} \sigma_{k} \tau_{k}^{-} \right| \mathbf{0}_{g.s.}^{(i)} \right\rangle \right\rangle}{\frac{1}{2} \mathbf{Q}_{\beta\beta}(\mathbf{0}_{g.s.}^{(f)}) + \mathbf{E}(\mathbf{1}_{m}^{+}) - \mathbf{E}_{0}}$$
$$= \sum_{m} \frac{M_{m} \ GT^{+} \ M_{m} \ GT^{-}}{\mathbf{E}_{m}}$$

to remember:

- 2 sequential & "allowed" β⁻-decays of "Gamow-Teller" type
- 2. "1, 2, 3, ... forbidden" decays negligible
- 3. Fermi-transitions do no contribute (because of different isospin-multiplets)

Can be determined via chargeexchange reactions in the (n,p) and (p,n) direction (e.g. (d,²He) or (³He,t))

neutrino is a virtual particle q~0.5fm⁻¹ (~ 100 MeV/c) (due to Heisenberg Δq·Δx ~ 1) degree of forbiddenness is lifted

Charge-exchange reactions (p,n) type & (n,p) type

 $M(GT) = \langle 1^{+} || OT^{+} || O_{g.s.} \rangle$

 $B(GT) = \frac{1}{2J_{i+1}} | M(GT) |^2$

 \underline{Q} : what is the connection between "weak $\sigma\tau$ operator" and the hadronic reaction

<u>A</u>: dominance of the $V_{\sigma\tau}$ effective interaction at medium energies

hadronic probes: (n,p), (d,²He), (t,³He) or (p,n), (³He,t) $\left[\frac{d\sigma}{d\Omega}\right] = \left[\frac{\mu}{\pi\hbar}\right]^2 \frac{k_f}{k_i} \text{ Nd } |V_{\sigma\tau}|^2 | < f | \sigma\tau| i > |^2$ q = 0!!Iargest at 100 - 200 MeV/A

 $M(GT) = <1^{+}|| OT^{+}|| O_{g.s.}^{i} >$ B(GT) = $\frac{1}{2J_{i}+1} | M(GT) |^{2}$

Charge-exchange reactions

Grand Raiden Magnetic Spectrometer

Resolution is the key !!!

almost 70 !! resolved single states up to 5 MeV identified as GT 1+ transitions !!!

the other leg (BGT⁺): $^{76}Se(d,^{2}He)^{76}As$ ($\Delta E = 120 \text{ keV}$)

Nuclear matrix elements and deformation

⁷⁶Ge: $β \sim + 0.1$ ⁷⁶Se: $β \sim -0.2$

reduction of the NME due to deformation is theoretically confirmed

but

expm'lly it seems to manifests itself (in $2\nu\beta\beta$ decay) by a lack of correlation between the two different B(GT) "legs", rather than a reduction of individual strength

From: T. R. Rodriguez, et al, PRL105 (2010)

another surprise:

low-E part of NME makes up ~100% of total 2vββ-ME

no need for GT giant resonance contribution

also useful as SN neutrino detector (sensitive to v temperature in SN)

question: why so stable !!!

A. Poves (simultaneous to our publication):

there is no $B(GT^+)$ strength, except for lowest 1^+ state

Shell model provides conclusive explanation for the deemed "pathologically" long half-life of ¹³⁶Xe. Expt'l test: ¹³⁶Ba(d,²He)¹³⁶Cs

<u>expmt:</u> <u>question:</u> $2\nu\beta\beta$ NME is exceptionally small how does the ME scale in the case of $0\nu\beta\beta$ decay?

2nd piece of puzzle

Charge-exchange reaction towards the 0vββ NMEs ???

Here: 2⁻ states and occupation vacancy numbers via chargex reactions

<u>Theory:</u> The 2⁻ strength makes up ~ 20-30% of the 0νββ ME!!

J. Suhonen, Phys. Lett B607, 87 (2005)

piece of puzzle **3**rd

The A=96 system and the $0v/2v \beta\beta$ NMEs

Single β & $\beta\beta$ decay in ⁹⁶Zr

two conflicting half-lives:

NEMO-3: $T_{1/2}^{2\nu\beta\beta} = (2.3 \pm 0.2) \times 10^{19} \text{ y}$ geo-chem: $T_{1/2} = (0.94 \pm 0.32) \times 10^{19} \text{ y}$

Q: can this difference be reconciled ? A: yes, if single β competes with $\beta\beta$ decay

$$\left(T_{1/2}\right)^{-1} = \left(T_{1/2}^{2\nu\beta\beta}\right)^{-1} + \left(T_{1/2}^{\beta}\right)^{-1}$$

 $\begin{array}{ll} \mbox{expected} & T_{1/2}^{\beta} = \ \left(1.6 \pm 0.9 \right) \times 10^{19} \, y \\ \mbox{experiment} & T_{1/2}^{\beta} > 2.6 \times 10^{19} \, y & \mbox{2} \\ \mbox{pred. (QRPA)} & T_{1/2}^{\beta} = 24 \times 10^{19} \, y & \mbox{3} \\ \mbox{BUT} \end{tabular}$

$$(T_{1/2}^{\beta})^{-1} \propto o(Q^{13}) \left\langle M_{\beta}^{4u} \right\rangle^2$$

Q-value $\longrightarrow M_{\beta}^{4u} \longrightarrow (T_{1/2}^{0\nu\beta\beta})^{-1} \propto Q^5 \left| M_{\beta\beta}^{0\nu} \right|^2 \left\langle m_{\beta\beta} \right\rangle^2$

1 Wieser, PRC64,2001, 2 Barabash, JPG-NPP22, 1996 3 Heiskanen, JPG3,2007

ldea

- (i) measure Q-value for ⁹⁶Zr → ⁹⁶Nb single β-decay by precision mass measurement and
 - (ii) measure the single β -decay rate (iii) \rightarrow ft-value
- determine the ⁹⁶Zr 4-fold forbidden
 β-decay NME and confront with theory
- confront with same theories aimed at calculating 0vββ-decay NME for the same nucleus!!

IGISOL/JYFLTRAP mass measm'nts

⁹⁶Zr (p, n)⁹⁶Nb reaction for production of ⁹⁶Nb

performing accurate mass measurements via cyclotron frequency

$$v_c = \frac{1}{2\pi} \frac{q}{m} \cdot \mathbf{B}$$

$$v_{\rm c} = v_- + v_+$$

Frequency determination done by TOF-ICR technique

ion motion in a Penning Trap a superposition of 3 harmonic motions:

- 1) axial motion (v_z)
- 2) magnetron motion (v_{-})
- 3) reduced cyclotron motion (v_+)

typical freq's:
$$V_{-} \approx 1$$
 kHz,
 $V_{+} \approx 1$ MHz
cycl. freq.: $V_{c} = V_{-} + V_{-}$

principle of isobar separation in purification trap

excitation of ion of interest with cyc. freq. causes collisional cooling of this species (purification: > 500/1)

Results

Ramsey excitation

Next: need $T_{1/2}$ of single β decay

$$T_{1/2}(\text{QRPA}) = 24 \times 10^{19} \text{ yr} \quad (g_A = 1)$$

$$T_{1/2}(\text{SM}) = \frac{11}{g_A^2} \times 10^{19} \text{ yr} \quad (g_A^2 = 0.75....1.6)$$

$$T_{1/2}(\text{exp}) > 2.3 \times 10^{19} \text{ yr}$$

Important side effect:

single β decay depends on g_A^2 $2\nu/0\nu\beta\beta$ decay depends on g_A^4

A measurements of single β decay would give for the first time an expmtl handle on the quenching of the axial vector coupling constant

$T_{1/2}\,\text{of}\,\,^{96}\text{Zr}\,\,\text{decay}$

Geochemical method (zircon sample)

accumulation of decay daughter over geological time

- **<u>Pros</u>**: can provide longer $T_{1/2}$
- <u>Cons</u>: measure only <u>total</u> decay
 - systematics from ⁹⁵Mo (n,γ) reaction n-sources: ²³⁸U sf , cosmics
 BUT: zircon contains Gd (i.e. ¹⁵⁷Gd(n,γ))
 - needs chemical isobar separation (A=96)

age of sample:1.822(±0.003) ×109 y
dated by U-Pb techniqueorigin:Capel Australiaadvantage:Mo is embedded in zircon
attice with infinite retention time

geo. $T_{1/2}$ calculation

- # of ⁹⁶Mo excess atoms in sample
- # of ⁹⁶Zr atoms in sample
- age of the sample

Counting-rates method

measures the decay rate

- <u>Pros</u>: measure <u>partial</u> decays
- <u>Cons</u>: extremely low counting rates
 background and time limited

Isobar separation method (U of Calgary)

These and more pieces to the puzzle

> chargex-reactions for $2\nu\beta\beta$ decay

Hadronic chargex and weak-interaction x-sections

- 0vββ-decay and chargex-reaction useful but limited
 e.g. 2⁻ states (resol'n is key)
- mass measurements for ββ-decay NME the potential still needs to be exploited
- > single β decay half-life for ⁹⁶Zr (and ⁴⁸Ca)
- ground-state properties of intermediate odd-odd nuclei (TRIUMF, TITAN-EC)
- need to address quenching issue <u>urgently!!</u>
- need relevant spectroscopic information (but theory needs to tell what is relevant)
- theory needs to converge !!

