TRIUMF DBD workshop Interfacing theory and experiment for reliable DBD NMEs calculation **Vancouver, Canada, May 11-13, 2016**

2 vbb-decay is the key for reliable calculation of 0 vbb-decay NMEs

Fedor Šimkovic

OUTLINE

I. Some notes about 2 vββ-decay
II. The DBD Nuclear Matrix Elements and the SU(4) symmetry
III. QRPA for description of states of multiphonon origin
IV. How many 0 vββ-decay NMEs we need to calculate?

November 1984, Dubna

We need reliable calculation of DBD NMEs

Fedor Simkovic

Some notes about 2 vbb-decay (NMEs)

Both 2νββ and 0νββ operators connect the same states. Both change two neutrons into two protons.

Explaining $2\nu\beta\beta$ -decay is necessary but not sufficient

There is no reliable calculation of the 2vbb-decay NMEs

Calculation via intermediate nuclear states: **QRPA** (sensitivity to pp-int.) **ISM** (quenching, truncation of model space, spin-orbit partners)

Calculation via closure NME: IBM, PHFB

No calculation: EDF

5/11/2016

Fedor Simkovic

The cross sections of $(t, {}^{3}He)$ and $(d, {}^{2}He)$ reactions give $B(GT^{\pm})$ for β^{+} and β^{-} , product of the amplitudes $(B(GT)^{1/2})$ entering the numerator of $M^{2\nu}_{GT}$

$$M_{GT}^{2\nu} = \sum_{m} \frac{M_{GT}^{(+)}(m) \ M_{GT}^{(-)}(m)}{Q_{\beta\beta}/2 + m_e + E_x(1_m^+) - E_0}$$

$$M_{GT}^{2\nu} = \sum_{m} \frac{M_{GT}^{(+)}(m) \ M_{GT}^{(-)}(m)}{Q_{\beta\beta}/2 + m_e + E_x(1_m^+) - E_0}$$

$$\sum_{\substack{(Z,A) \ (Z+1,A) \ (Z+$$

G(2v) = 3.4x 10⁻²⁰ MeV² a⁻¹

 $2\nu\beta\beta$ - half-life

(1.1 ± 0.2) x 10²¹ a

(1.5 ± 0.1) x 10²¹ a

recommended. exp. value:

 \mathcal{N}

 g_A^2

$$I_{GT-cl}^{2\nu} = \sum M_{GT}^{(+)}(m) \ M_{GT}^{(-)}(m)$$

(Z+1,A)

GT

SSD hypothesis

m

$$M_{GT-cl}^{2\nu} = \frac{3}{\sqrt{ft_{El}}}$$

5/1Grewe, ... Frekers at al, PRC 78, 044301 (2008) kovic

4 5 E_x (MeV)

⁷⁶Ge(3He,t)⁷⁶As

Θ_{c.m.} ≈ 0.2°

ΔE = 30 keV RCNP 08

3

-1

0

Jullen

5

0"

DGT

(Z+2,A)

SSD – theoretical studies

$M_{GT}^{K} =$	\sum_{m}	$\left(\frac{M_m^i(1^+)M_m^i}{E_m - E_i + \epsilon}\right)$	$\frac{M_m^f(1^+)}{M_{10} + \nu_{10}} + \frac{M_m}{E_m}$	$\frac{M_m^i(1^+)M_m^f(1^+)}{-E_i + e_{20} + \nu_{20}} \qquad M_{GT}^K = M_{GT}^L(\nu_{10} \leftrightarrow \nu_{20})$				
$\overset{\text{SSD}}{\Rightarrow} \frac{M_1^i(1^+)M_1^f(1^+)}{E_1 - E_i + e_{10} + \nu_{10}} + \frac{M_1^i(1^+)M_1^f(1^+)}{E_1 - E_i + e_{20} + \nu_{20}} \Rightarrow 2\frac{M_1^i(1^+)M_1^f(1^+)}{E_1 - E_i + \Delta}$								
Isotope	f.s.	$T_{1/2}(SSD)[y]$	T _{1/2} (exp.)[y]	$\begin{array}{c} \textbf{common approx.} \\ e_{10}+\nu_{10} \ \approx \ e_{20}+\nu_{20} \end{array}$				
¹⁰⁰ Mo	0 _{g.s.}	2vp p 6.8 10 ¹⁸	6.8 10 ¹⁸	$\approx (E_i - E_f)/2 \equiv \Delta$				
¹¹⁶ Cd	0 ₁ 0 _{g.s.}	4.2 10 ²⁰ 1.1 10 ¹⁹	6.1 10 ¹⁸ 2.6 10 ¹⁹	$E_1-E_i \approx 0$ or neg. \Rightarrow sensitivity to lepton energies in energy				
¹²⁸ Te	0 _{g.s.}	1.1 10 ²⁵ EC/EC	2.2 10 ²⁴	denominators ⇒ SSD and HSD offer different				
¹⁰⁶ Cd	0 _{g.s.}	>4.4 10 ²¹	> 5.8 10 ¹⁷	differential characteristics				
¹³⁰ Ba	0 _{g.s.}	5.0 10 ²²	4.0 10 ²¹	Šimkovic, Šmotlák, Semenov J. Phys. G, 27, 2233, 2001				

Domin, Kovalenko, Šimkovic, Semenov, NPA 753, 337 (2005)

5/11/2016

Fedor Simkovic

7

¹⁰⁰Mo 2β2ν: Experimental Study of SSD Hypothesis

$$\begin{aligned} 2\nu\beta\beta-\text{decay rate} \\ \begin{bmatrix} T_{1/2}^{2\nu\beta\beta}(0^+) \end{bmatrix}^{-1} &= \frac{m_e}{8\pi^7 \ln 2} (G_\beta m_e^2)^4 I^{2\nu} (0^+) , \\ \begin{bmatrix} T_{1/2}^{2\nu\beta\beta}(0^+) \end{bmatrix}^{-1} &= \frac{m_e}{8\pi^7 \ln 2} (G_\beta m_e^2)^4 I^{2\nu} (0^+) , \\ \begin{bmatrix} T_{1/2}^{2\nu\beta\beta}(0^+) \end{bmatrix}^{-1} &= \frac{m_e}{8\pi^7 \ln 2} (G_\beta m_e^2)^4 I^{2\nu} (0^+) , \\ \begin{bmatrix} T_{1/2}^{2\nu}(0^+) &= \frac{1}{m_e^9} \int_{m_e}^{E_i - E_f - m_e} F_0(Z_f, E_{e_1}) p_{e_1} E_{e_1} dE_{e_1} \\ &\times \int_{m_e}^{E_i - E_f - E_{e_1}} F_0(Z_f, E_{e_2}) p_{e_2} E_{e_2} dE_{e_2} \\ &\times \int_{0}^{E_i - E_f - E_{e_1} - E_{e_2}} E_{\nu_1}^2 E_{\nu_2}^2 A^{2\nu} dE_{\nu_1} . \\ \end{bmatrix} \\ \mathcal{A}^{2\nu} &= g_V^4 \begin{bmatrix} \frac{1}{4} |M_F^K + M_F^L|^2 + \frac{3}{4} |M_F^K - M_F^L|^2 \end{bmatrix} \\ &- g_V^2 g_A^2 \operatorname{Re} \{M_F^{K*} M_{GT}^L + M_{GT}^{K*} M_F^L \} \\ &+ \frac{g_A^4}{3} \begin{bmatrix} \frac{3}{4} |M_{GT}^K + M_{GT}^L|^2 + \frac{1}{4} |M_{GT}^K - M_{GT}^L|^2 \end{bmatrix} \\ &+ \frac{g_A^4}{3} \begin{bmatrix} \frac{3}{4} |M_{GT}^K + M_{GT}^L|^2 + \frac{1}{4} |M_{GT}^K - M_{GT}^L|^2 \end{bmatrix} \\ & M_F^K &= \sum_n \frac{K(1_n^+)}{2} F_n, \quad M_F^L &= \sum_n \frac{L(1_n^+)}{2} F_n, \\ &M_{GT}^K &= \sum_n \frac{K(1_n^+)}{2} G_n, \quad M_{GT}^L &= \sum_n \frac{L(1_n^+)}{2} G_n, \\ &M_{GT}^K &= \sum_n \frac{K(1_n^+)}{2} G_n, \quad M_{GT}^L &= \sum_n \frac{L(1_n^+)}{2} G_n, \\ &G_n &= \langle 0_f^+ \parallel \sum_m \tau_m^- \sigma_m \parallel 1_n^+ \rangle \langle 1_n^+ \parallel \sum_m \tau_m^- \sigma_m \parallel 0_i^+ \rangle \\ &E_n(J^+) &= \frac{2}{(2E_n(J^+) - E_i - E_f) - \epsilon_K} \\ &E_n(J^+) &= \frac{2}{(2E_n(J^+) - E_i - E_f) - \epsilon_K} \\ &E_n(J^+) &= \frac{2}{(2E_n(J^+) - E_i - E_f) - \epsilon_K} \\ &H_n(J^+) &= \frac{2}{(2E_n(J^+) - E_i - E_f) - \epsilon_K} \\ &H_n(J^+) &= \frac{2}{(2E_n(J^+) - E_i - E_f) - \epsilon_K} \\ &H_n(J^+) &= \frac{2}{(2E_n(J^+) - E_i - E_f) - \epsilon_K} \\ &H_n(J^+) &= \frac{2}{(2E_n(J^+) - E_i - E_f) - \epsilon_K} \\ &H_n(J^+) &= \frac{2}{(2E_n(J^+) - E_i - E_f) - \epsilon_K} \\ &H_n(J^+) &= \frac{2}{(2E_n(J^+) - E_i - E_f) - \epsilon_K} \\ &H_n(J^+) &= \frac{2}{(2E_n(J^+) - E_i - E_f) - \epsilon_K} \\ &H_n(J^+) &= \frac{2}{(2E_n(J^+) - E_i - E_f) - \epsilon_K} \\ &H_n(J^+) &= \frac{2}{(2E_n(J^+) - E_i - E_f) - \epsilon_K} \\ &H_n(J^+) &= \frac{2}{(2E_n(J^+) - E_i - E_f) - \epsilon_K} \\ &H_n(J^+) &= \frac{2}{(2E_n(J^+) - E_i - E_f) - \epsilon_K} \\ &H_n(J^+) &= \frac{2}{(2E_n(J^+) - E_i - E_f) - \epsilon_K} \\ &H_n(J^+) &= \frac{2}{(2E_n(J^+) - E_h - E_f) - \epsilon_K} \\ &H_n(J^+) &= \frac{2}{(2E_n(J^+) - E_h - E_f) - \epsilon_K} \\ \\ &H_n(J^+) &= \frac{2}{(2E_$$

$2\nu\beta\beta$ -decay within the field theory

F.Š., G. Pantis, Phys. Atom. Nucl. 62 (1999) 585

Weak interaction Hamiltonian

$$\mathcal{H}^{\beta}(x) = \frac{G_F}{\sqrt{2}} 2 \left[\bar{e}_L(x) \gamma_{\alpha} \nu_{eL}(x) \right] j_{\alpha}(x) + h.c.$$

2nbb-decay amplitude

$$< f|S^{(2)}|i> =$$

$$\frac{(-i)^2}{2} \left(\frac{G_F}{\sqrt{2}}\right)^2 L_{\mu\nu}(p_1, p_2, k_1, k_2) J_{\mu\nu}(p_1, p_2, k_1, k_2)$$

$$-(p_1 \leftrightarrow p_2) - (k_1 \leftrightarrow k_2) + (p_1 \leftrightarrow p_2)(k_1 \leftrightarrow k_2)$$

Hadron part of amplitude

$$J_{\mu\nu}(p_1, p_2, k_1, k_2) = \int e^{-i(p_1 + k_1)x_1} e^{-i(p_2 + k_2)x_2}$$

out $< p_f |T(J_\mu(x_1)J_\nu(x_2))| p_i >_{in} dx_1 dx_2$

5/11/2016

Fedor Simkovic

11

Integral representation of M_{GT}

$$M_{GT} = \frac{i}{2} \int_0^\infty (e^{i(p_{10}+k_{10}-\Delta)t} + e^{i(p_{20}+k_{20}-\Delta)t}) M_{AA}(t) dt$$

with

$$M_{AA}(t) = <0_f^+ |\frac{1}{2}[A_k(t/2), A_k(-t/2)]|0_i^+ >$$

$$A_k(t) = e^{iHt} A_k(0) e^{-iHt}, \quad A_k = \sum_i \tau_i^+(\vec{\sigma}_i)_k, \ k = 1, 2, 3.$$

$$A_{k}(t) = e^{itH} A_{k}(0) e^{-itH} = \sum_{n=0}^{\infty} \frac{(it)^{n}}{n!} \underbrace{\prod_{k=0}^{n \ times}}_{H[H...[H]}, A_{k}(0)]...]$$

12

Completeness: $\Sigma_n |n > < n| = 1$

$$< A'|J_{\alpha}(x_{1})J_{\beta}(x_{2})|A> = \sum_{n} < A'|J_{\alpha}(0,\vec{x}_{1})|n> < n|J_{\beta}(0,\vec{x}_{2})|A> \times e^{-i(E'-E_{n})x_{10}}e^{-i(E_{n}-E)x_{20}}$$

$$\int_0^\infty e^{-iat} dt \Rightarrow \lim_{\epsilon \to 0} \int_0^\infty e^{-i(a-i\epsilon)t} dt = \lim_{\epsilon \to 0} \frac{-i}{a-i\epsilon}$$

5/11/2016
$$M_{GT} = \sum_{n} \frac{\langle 0_{f}^{+} | A(0)_{k} | 1_{n}^{+} \rangle \langle 1_{n}^{+} | A(0)_{k} | 0_{i}^{+} \rangle}{E_{n} - E_{i} + \Delta}$$

Double beta decay is a two-body process

 $\mathbf{H} = \mathbf{one} - \mathbf{body} + \mathbf{two} - \mathbf{body}, \quad \mathbf{A}_k(0) = \mathbf{one-body}$

If $H \approx \text{one-body op.} \implies \mathbf{A}_{\mathbf{k}}(\mathbf{t})$ is one-body op.

5/11/2016

Fedor Simkovic

Operator Expansion Method and DBD NMEs

C.R. Ching, T.H. Ho, Commun. Theor. Phys. 10, 45 (1988); 11, 433 (1989); 11, 495 (1989)

$$M_{GT}^{2\nu} = \frac{1}{2\Delta} \sum_{n} \langle f | \mathcal{O}_{GT} | n \rangle (1 - \frac{(E_n - E_i) - (E_f - E_n)}{\Delta} + \frac{(E_n - E_i)^2 - (E_f - E_n)^2}{\Delta^2} - \frac{1}{\Delta^2} - \frac{1}{2\Delta} \left(\langle f | [\mathcal{O}_{GT}, \mathcal{O}_{GT}] | i \rangle + \frac{\langle f | [\mathcal{O}_{GT}, [H, \mathcal{O}_{GT}]] | i \rangle}{\Delta} + \frac{\langle f | [\mathcal{O}_{GT}, [H, [H, \mathcal{O}_{GT}]]] | i \rangle}{\Delta^2} + \cdots \right).$$

Convergence of a series?

This problem does

not appear?

14

F. Š., JINR Commun. 39, 21 (1989); M. Gmitro, F. Š., Izv. AN SSR 54, 1780 (1990); F. Š., G. Pantis, Czech. J. Phys. B 48, 235 (1998); A. Faessler, F. Š., J. Phys. G 24, 2139 (1998)

$$M_{GT}^{2\nu} = \langle f | \frac{i}{2} \int_0^\infty e^{i\Delta t} [\mathcal{O}_{GT}(0), \mathcal{O}_{GT}(t)] dt | i \rangle$$
$$\mathcal{O}_{GT}(t) = e^{iHt} \mathcal{O}_{GT}(0) e^{-iHt}$$

Nuclear Hamiltonian

Central and tensor nuclear interactions

$$H \approx V_C + V_{CN} + V_{TN} \quad V_{CN} = \frac{1}{2} \sum_{i \neq j} \left[(g_{SE}(r_{ij}) \Pi_e^r(ij) + g_{SO}(r_{ij}) \Pi_o^r(ij)) \Pi_s^\sigma(ij) + \right]$$

Effective Coulomb int. due to different ground states

 $(g_{TE}(r_{ij}) \Pi_e^r(ij) + g_{TO}(r_{ij}) \Pi_o^r(ij)) \Pi_t^\sigma(ij)],$

$$V_{C} = \frac{1}{2} \sum_{i \neq j} (E_{f} - E_{i}) O_{ij}^{\tau} \qquad V_{TN} = \frac{1}{2} \sum_{i \neq j} (g_{TNE}(r_{ij}) \Pi_{e}^{r}(ij) + g_{TNO}(r_{ij}) \Pi_{o}^{r}(ij)) S_{ij}.$$

$$M_{GT} = \langle 0_{f}^{+} | \frac{1}{2} \mathcal{P} \sum_{i \neq j} \tau_{i}^{+} \tau_{j}^{+} (\mathcal{V}^{singlet}(r_{ij}) \Pi_{s}^{\sigma}(ij) + \mathcal{V}^{tensor}(r_{ij}) S_{ij}) | 0_{i}^{+} \rangle$$

$$2\nu\beta\beta NME \\ \text{within} \\ \text{the OEM} \qquad \qquad \mathcal{V}^{triplet}(r_{ij}) \Pi_{t}^{\sigma}(ij) + \mathcal{V}^{tensor}(r_{ij}) S_{ij}) | 0_{i}^{+} \rangle$$

$$\mathcal{V}^{singlet} = \frac{-2}{g_{TE} - g_{SE} - 4g_{TNE} + \Delta} - \frac{4}{g_{TE} - g_{SE} + 2g_{TNE} + \Delta}$$

$$\mathcal{V}^{triplet} = \frac{1}{3} [\frac{4}{\Delta} + \frac{4}{-6g_{TNO} + \Delta} + \frac{4}{6g_{TNO} + \Delta} - \frac{2}{g_{SO} - g_{TO} - 2g_{TNO} + \Delta}]$$

$$\mathcal{V}^{tensor} = \frac{1}{3} [\frac{1}{\Delta} + \frac{1}{-6g_{TNO} + \Delta} - \frac{2}{6g_{TNO} + \Delta} + \frac{4}{6g_{TNO} + \Delta} - \frac{1}{g_{SO} - g_{TO} - 2g_{TNO} + \Delta}]$$

$$5/11/2016 \qquad \qquad \mathcal{V}^{tensor} = \frac{1}{3} [\frac{1}{\Delta} + \frac{1}{-6g_{TNO} + \Delta} - \frac{2}{6g_{TNO} + \Delta} + \frac{1}{g_{SO} - g_{TO} - 2g_{TNO} + \Delta}]$$

If central and tensor interactions are neglected we end up with closure NME with $\langle E_n - (E_i + E_f)/2 \rangle = E_i - E_f = \Delta$

$$M_{GT} = <0_f^+ |\frac{1}{2} \sum_{n \neq m} \tau_n^+ \tau_m^+ \frac{2}{\Delta} \vec{\sigma}_n \cdot \vec{\sigma}_m |0_i^+ >$$

16

mkovic

The DBD Nuclear Matrix Elements and the SU(4) symmetry

5/11/2016

Fedor Simkovic

Suppression of the DBD NMEs and their sensitivity to particle particle interaction strength

Suppression of the Two Neutrino Double Beta Decay by Nuclear Structure Effects P. Vogel, M.R. Zirnbauer, PRL (1986) 3148

 $\begin{array}{l} g_{pair} \text{-} strength \ of \ isovector \ like \ nucleon \ pairing \ (L=0, \ S=0, \ T=1, \ M_T=\pm 1) \\ g_{pp}^{\ T=1} \text{-} \ strength \ of \ isovector \ spin-0 \ pairing \ (L=0, \ S=0, \ T=1, \ M_T=0 \\ g_{pp}^{\ T=0} \text{-} \ strength \ of \ isoscalar \ spin-1 \ pairing \ (L=0, \ S=1, \ T=0) \\ g_{ph} \text{-} \ strength \ of \ particle-hole \ force \end{array}$

M_F and M_{GT} do not depend on the mean-field part of H and are governed by a weak violation of the SU(4) symmetry by the particle-particle interaction of H

$$M_F^{2\nu} = -\frac{48\sqrt{\frac{33}{5}} \left(g_{pair} - g_{pp}^{T=1}\right)}{(5g_{pair} + 3g_{ph})(10g_{pair} + 6g_{ph})}$$
$$M_{GT}^{2\nu} = \frac{144\sqrt{\frac{33}{5}}}{5g_{pair} + 9g_{ph}} \begin{cases} (g_{pair} - g_{pp}^{T=0})\\ (10g_{pair} + 20g_{ph}) \end{cases}$$
$$+ \frac{2g_{ph}(g_{pair} - g_{pp}^{T=1})}{(10g_{pair} + 20g_{ph})(10g_{pair} + 6g_{ph})}$$
311 (2015)

5/11/2016 D. Štefánik, F.Š., A. Faessler, PRC 91, 064311 (201

$$S_F^{ew}(i,f) \equiv \sum_n \left(E_n - \frac{E_i + E_f}{2} \right) \langle f | T^- | n \rangle \langle n | T^- | i \rangle$$
$$= \frac{1}{2} \langle f | [T^-, [H, T^-]] | i \rangle,$$

$$S_{GT}^{ew}(i,f) \equiv \sum_{n} \left(E_n - \frac{E_i + E_f}{2} \right) \langle f | \vec{\mathcal{O}}_{GT} | n \rangle \langle n | \vec{\mathcal{O}}_{GT} | i \rangle$$

 E'_n –

$$= \sum_{M} (-1)^{M} \frac{1}{2} \left\langle f \right| \left[(\mathcal{O}_{GT})_{-M}, \left[H, (\mathcal{O}_{GT})_{M} \right] \right] \left| i \right\rangle,$$

Energy weighted sum rules of $\Delta = 2$ nuclei

$$\vec{\mathcal{O}}_{GT} = \sum_{k=1}^{A} \tau_k^{-} \vec{\sigma}_k$$

	$T = M_T$	Transition			Coefficients	
$E' \perp E'$			а	b	С	d
$E' - \frac{E_i + E_f}{E_i} =$	2	GT	3	5	-59/15	44/5
² ⁿ 2		Fermi	3	3	50/3	-59/5
$ag_{pair} + bg_{ph}$	4	GT	5	9	-64/35	39/5
opun opn	4	Fermi	5	3	401/35	-192/35
$\int a^{T=1}$	6	GT	7	13	-71/63	340/63
$+ c(g_{pair} - g_{pp})$		Fermi	7	3	482/63	-71/21
	8	GT	9	17	-80/99	103/33
$+ d(g_{pair} - g_{pair}^{T=0})$		Fermi	9	3	469/99	-80/33
J11/2010	10	GT	11	21	-7/11	12/11
		Fermi	11	3	26/11	-21/11

What is the meaning of quantity $(2E_{n=1}-E_i-E_f)$?

QRPA for description of states of multiphonon origin

A. Smetana, F.Š., M. Macko, AIP Conf. Proc. 1686, 020022 (2015) and to be submitted

$\beta^{\scriptscriptstyle -}$ transitions in the standard QRPA

Calculate what can be confronted with experiment.

Limitations of the standard QRPA

We want to fix the following limitations of the standard QRPA:

- 1. Due to the QBA Pauli principle is broken and the QRPA colapses for the higher values of coupling parameters, which might be of physical interest.
- Excited states of multi-phonon structure are neglected.
 Only the linear terms in phonon operator are considered.

Schematic model

Use exactly solvable model to test your ideas.

We demonstrate the insufficiency of the multi-phonon approx. by comparison with the exact solution.

pn—Lipkin model has the structure of the realistic hamiltonian.

single J-shell with semidegeneracy $\Omega = \frac{N_p + N_n}{2}$ $H_F = \varepsilon C + \lambda_1 A^{\dagger} A + \lambda_2 (A^{\dagger} A^{\dagger} + AA)$ $C = \sum_m a_{pm}^{\dagger} a_{pm} + \sum_m a_{pm}^{\dagger} a_{pm},$ $A^{\dagger} = [a_p^{\dagger} a_n^{\dagger}]^{J=0},$ $\lambda_1 = 2[\chi'(u_p^2 v_n^2 + v_p^2 u_n^2) - \kappa'(u_p^2 u_n^2 + v_p^2 v_n^2)]$ $\lambda_2 = 2(\chi' + \kappa') u_p v_p u_n v_n$

 κ' parametrizes particle-particle and

 $p_{\epsilon}\chi'_{i}$ metrizes particle-hole interactions

MEDEX 2015

30

Schematic model – exact solution

The even and odd states do not mix!

Results are obtained from diagonalization of Hamiltonian.

Schematic model – β^- transitions

The multi-phonon approximation cannot reproduce the exact solution!

Idea of nonlinear phonon operator

Desired first goal: the first and higher excited states described by single QRPA equation

QRPA with non-linear phonon operator

The QRPA equation:

 $\begin{pmatrix} \mathcal{A}_{11} & \mathcal{A}_{13} & \mathcal{B}_{11} & \mathcal{B}_{13} \\ \mathcal{A}_{31} & \mathcal{A}_{33} & \mathcal{B}_{31} & \mathcal{B}_{33} \\ \mathcal{B}_{11} & \mathcal{B}_{31} & \mathcal{A}_{11} & \mathcal{A}_{13} \\ \mathcal{B}_{13} & \mathcal{B}_{33} & \mathcal{A}_{31} & \mathcal{A}_{33} \end{pmatrix} \begin{pmatrix} X_1^m \\ X_3^m \\ Y_1^m \\ Y_3^m \end{pmatrix} = E^m \begin{pmatrix} \mathcal{U}_{11} & \mathcal{U}_{13} & 0 & 0 \\ \mathcal{U}_{31} & \mathcal{U}_{33} & 0 & 0 \\ 0 & 0 & -\mathcal{U}_{11} & -\mathcal{U}_{13} \\ 0 & 0 & -\mathcal{U}_{31} & -\mathcal{U}_{33} \end{pmatrix} \begin{pmatrix} X_1^m \\ X_3^m \\ Y_1^m \\ Y_3^m \end{pmatrix}$

The RPA vacuum gets very complicated!!!

$$|RPA\rangle = \mathcal{N} \sum a_{2n} (B^{\dagger}B^{\dagger})^n |0\rangle$$

the first 4 terms in the expansion of the RPA vacuum: $A, B, U \propto a_2, a_4, a_6$ $a_0 = 1, \quad a_2 = \frac{1}{2} \frac{(X_1^m X_1^m Y_1^m - 6X_1^m X_3^m Y_3^m + 5X_3^m Y_1^m Y_1^m)}{(X_1^m X_1^m X_1^m + 8X_1^m X_3^m Y_1^m - 60X_3^m X_3^m Y_3^m)},$ $a_4 = \frac{1}{8} \frac{(2X_1^m X_1^m Y_3^m + X_1^m Y_1^m Y_1^m - 20X_3^m Y_1^m Y_3^m)}{(X_1^m X_1^m X_1^m + 8X_1^m X_3^m Y_1^m - 60X_3^m X_3^m Y_3^m)}, \quad a_6 = \frac{1}{48} \frac{(6X_1^m Y_1^m Y_3^m - 24X_3^m Y_3^m Y_1^m - 60X_3^m X_3^m Y_3^m)}{(X_1^m X_1^m X_1^m + 8X_1^m X_3^m Y_1^m - 60X_3^m X_3^m Y_3^m)},$

Need for further approximations and for constructing a closed iterative procedure.

MEDEX 201

QRPA with non-linear phonon operator

In every step of iteration we do:

convert the norm matrix to its standar form...

$$\left(\begin{array}{cc} U & 0 \\ 0 & -U \end{array} \right) = \mathcal{O}\lambda^{1/2} \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array} \right) \lambda^{1/2} \mathcal{O}^{-1}$$

... obtaining the parameters: its rotational angle & eigenvalues

2. which are used to "rotate" the system into the standard QRPA form

$$\begin{pmatrix} \bar{A} & \bar{B} \\ \bar{B} & \bar{A} \end{pmatrix} \begin{pmatrix} \bar{X}^m \\ \bar{Y}^m \end{pmatrix} = E_m \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} \bar{X}^m \\ \bar{Y}^m \end{pmatrix}$$

$$\lambda^{-1/2} \mathcal{O}^{-1} \begin{pmatrix} A & B \\ B & A \end{pmatrix} \mathcal{O} \lambda^{-1/2}$$

$$\lambda^{1/2} \mathcal{O}^{-1} \begin{pmatrix} X^m \\ Y^m \end{pmatrix}$$

MEDEX 2015

QRPA with non-linear phonon operator

...and we "linearize" the procedure

introducing F-operators to write the phonon operator in its "linear" form: $Q_m^{\dagger} = \overline{X}_1^m F_1^{\dagger} + \overline{X}_3^m F_3^{\dagger} - \overline{Y}_1^m F_1 - \overline{Y}_3^m F_3$ where:

$$F_{1}^{\dagger} = \frac{1}{\sqrt{\lambda_{1}}} \left(B^{\dagger} \cos \theta + B^{\dagger} B^{\dagger} B^{\dagger} \sin \theta \right), \qquad F_{1} = \frac{1}{\sqrt{\lambda_{1}}} \left(B \cos \theta + BBB \sin \theta \right)$$

$$F_{3}^{\dagger} = \frac{1}{\sqrt{\lambda_{3}}} \left(-B^{\dagger} \sin \theta + B^{\dagger} B^{\dagger} B^{\dagger} \cos \theta \right), \qquad F_{3} = \frac{1}{\sqrt{\lambda_{3}}} \left(-B \sin \theta + BBB \cos \theta \right)$$

$$F_{3} = \frac{1}{\sqrt{\lambda_{3}}} \left(-B \sin \theta + BBB \cos \theta \right)$$

$$F_{3} = \frac{1}{\sqrt{\lambda_{3}}} \left(-B \sin \theta + BBB \cos \theta \right)$$

$$F_{3} = \frac{1}{\sqrt{\lambda_{3}}} \left(-B \sin \theta + BBB \cos \theta \right)$$

$$F_{3} = \frac{1}{\sqrt{\lambda_{3}}} \left(-B \sin \theta + BBB \cos \theta \right)$$

$$F_{3} = \frac{1}{\sqrt{\lambda_{3}}} \left(-B \sin \theta + BBB \cos \theta \right)$$

$$F_{3} = \frac{1}{\sqrt{\lambda_{3}}} \left(-B \sin \theta + BBB \cos \theta \right)$$

$$F_{3} = \frac{1}{\sqrt{\lambda_{3}}} \left(-B \sin \theta + BBB \cos \theta \right)$$

$$F_{3} = \frac{1}{\sqrt{\lambda_{3}}} \left(-B \sin \theta + BBB \cos \theta \right)$$

$$F_{3} = \frac{1}{\sqrt{\lambda_{3}}} \left(-B \sin \theta + BBB \cos \theta \right)$$

$$F_{3} = \frac{1}{\sqrt{\lambda_{3}}} \left(-B \sin \theta + BBB \cos \theta \right)$$

$$F_{3} = \frac{1}{\sqrt{\lambda_{3}}} \left(-B \sin \theta + BBB \cos \theta \right)$$

$$F_{3} = \frac{1}{\sqrt{\lambda_{3}}} \left(-B \sin \theta + BBB \cos \theta \right)$$

$$F_{3} = \frac{1}{\sqrt{\lambda_{3}}} \left(-B \sin \theta + BBB \cos \theta \right)$$

$$F_{3} = \frac{1}{\sqrt{\lambda_{3}}} \left(-B \sin \theta + BBB \cos \theta \right)$$

$$F_{3} = \frac{1}{\sqrt{\lambda_{3}}} \left(-B \sin \theta + BBB \cos \theta \right)$$

$$F_{3} = \frac{1}{\sqrt{\lambda_{3}}} \left(-B \sin \theta + BBB \cos \theta \right)$$

$$F_{3} = \frac{1}{\sqrt{\lambda_{3}}} \left(-B \sin \theta + BBB \cos \theta \right)$$

$$F_{3} = \frac{1}{\sqrt{\lambda_{3}}} \left(-B \sin \theta + BBB \cos \theta \right)$$

$$F_{3} = \frac{1}{\sqrt{\lambda_{3}}} \left(-B \sin \theta + BBB \cos \theta \right)$$

$$F_{3} = \frac{1}{\sqrt{\lambda_{3}}} \left(-B \sin \theta + BBB \cos \theta \right)$$

$$F_{3} = \frac{1}{\sqrt{\lambda_{3}}} \left(-B \sin \theta + BBB \cos \theta \right)$$

$$F_{3} = \frac{1}{\sqrt{\lambda_{3}}} \left(-B \sin \theta + BBB \cos \theta \right)$$

$$F_{3} = \frac{1}{\sqrt{\lambda_{3}}} \left(-B \sin \theta + BBB \cos \theta \right)$$

$$F_{3} = \frac{1}{\sqrt{\lambda_{3}}} \left(-B \sin \theta + BBB \cos \theta \right)$$

$$F_{3} = \frac{1}{\sqrt{\lambda_{3}}} \left(-B \sin \theta + BBB \cos \theta \right)$$

$$F_{3} = \frac{1}{\sqrt{\lambda_{3}}} \left(-B \sin \theta + BBB \cos \theta \right)$$

$$F_{3} = \frac{1}{\sqrt{\lambda_{3}}} \left(-B \sin \theta + BBB \cos \theta \right)$$

$$F_{3} = \frac{1}{\sqrt{\lambda_{3}}} \left(-B \sin \theta + BBB \cos \theta \right)$$

$$F_{3} = \frac{1}{\sqrt{\lambda_{3}}} \left(-B \sin \theta + BBB \cos \theta \right)$$

$$F_{3} = \frac{1}{\sqrt{\lambda_{3}}} \left(-B \sin \theta + BBB \cos \theta \right)$$

$$F_{3} = \frac{1}{\sqrt{\lambda_{3}}} \left(-B \sin \theta + BBB \cos \theta \right)$$

$$F_{3} = \frac{1}{\sqrt{\lambda_{3}}} \left(-B \sin \theta + BBB \cos \theta \right)$$

$$F_{3} = \frac{1}{\sqrt{\lambda_{3}}} \left(-B \sin \theta + BBB \cos \theta \right)$$

$$F_{3} = \frac{1}{\sqrt{\lambda_{3}}} \left(-B \sin \theta + BBB \cos \theta \right)$$

$$F_{3} = \frac{1}{\sqrt{\lambda_{3}}} \left(-B \sin \theta + BBB \cos \theta \right)$$

$$F_{3} = \frac{1}{\sqrt{\lambda_{3}}} \left(-B \sin \theta + BBB \cos \theta \right)$$

$$F_{3} = \frac{1}{\sqrt{\lambda_{3}}} \left(-B \sin \theta + BBB \cos \theta \right)$$

$$F_{3} = \frac{1}{\sqrt{\lambda_{3}}} \left(-B \sin \theta$$

it allows us to construct standard-like RPA vacuum:

$$|RPA\rangle = \mathcal{N} e^{\frac{1}{2}\sum_{ij}d_{ij}F_i^{\dagger}F_j^{\dagger}}|BCS\rangle$$

$$\simeq \mathcal{N} \left(1 + a_2B^{\dagger}B^{\dagger} + a_4(B^{\dagger}B^{\dagger})^2 + a_6(B^{\dagger}B^{\dagger})^3\right)$$

MEDEX 2015

Results

39

Results

• beta transition operators

Is there a scaling factor between 0vββ- and 2 vββ-decay NMEs?

5/11/2016

Fedor Simkovic

41

How many Ονββ-decay NMEs have to be calculated?

 $M_F, M_{GT,} M_T \dots$

5/11/2016

Fedor Simkovic

The $Ov\beta\beta$ -decay with emission of electrons in $s_{1/2}$ and $p_{1/2}$ wave state

D. Štefánik, R. Dvornický, F.Š., Nuclear Theory 33 (2014) 115

$$\psi(\mathbf{r}, p, s) \simeq \psi_{s_{1/2}}(\mathbf{r}, p, s) + \psi_{p_{1/2}}(\mathbf{r}, p, s) = \begin{pmatrix} g_{-1}(\varepsilon, r)\chi_s \\ f_{+1}(\varepsilon, r)(\vec{\sigma} \cdot \hat{\mathbf{p}})\chi_s \end{pmatrix} + \begin{pmatrix} ig_{+1}(\varepsilon, r)(\vec{\sigma} \cdot \hat{\mathbf{r}})(\vec{\sigma} \cdot \hat{\mathbf{p}})\chi_s \\ -if_{-1}(\varepsilon, r)(\vec{\sigma} \cdot \hat{\mathbf{r}})\chi_s \end{pmatrix}$$

Exact relativ. electron w.f.

$$\begin{aligned} & \left[T_{1/2}^{0\nu\beta\beta} \right]^{-1} = \frac{|m_{\beta\beta}|^2}{m_e^2} g_A^4 \left(2Re \left\{ M_s M_r^* \right\} G_{sr} + 2Re \left\{ M_s M_p^* \right\} G_{sp} + 2Re \left\{ M_s M_p^* \right\} G_{rp} + G_{ss} |M_s|^2 + G_{rr} |M_r|^2 + G_{pp} |M_p|^2 \right), \\ & \left[M_s \right]^2 = -\frac{M_F}{g_A^2} + M_{GT} + M_T \right] M_{F,GT,T} = \sum_{r,s} \left\langle 0 \right| h_{F,GT,T} (r_-) \mathcal{O}_{F,GT,T} |0\rangle \\ & M_p = -\frac{M_F'}{g_A^2} + M_{GT}' + M_T' + M_V + M_A + M_A' \\ & M_V = i \sum_{r,s} \left\langle 0 \right| \frac{h_{AV}(r_-) + h_{VP}(r_-)}{2R^2} \tau_r^+ \tau_s^+ (\mathbf{r}_- \times \mathbf{r}_+) \cdot \vec{\sigma}_r |0\rangle \\ & M_f, GT, T = \sum_{r,s} \left\langle 0 \right| h_{F,GT,T} (r_-) \mathcal{O}_{F,GT,T} \left(\frac{|\mathbf{r}_-|^2 - |\mathbf{r}_+|^2}{4R^2} \right) \\ & M_A = \sum_{r,s} \left\langle 0 \right| \frac{h_{AP}(r_-) + h_{AA}(r_-) + h_{MM}(r_-)}{2R^2} \\ & \times \tau_r^+ \tau_s^+ (\vec{\sigma}_r \cdot \mathbf{r}_-) (\vec{\sigma}_s \cdot \mathbf{r}_+) |0\rangle \\ & M_r = \sum_{r,s} \left\langle 0 \right| \left(h_R(r_-) + h_R'(r_-) \right) \mathcal{O}_T - 2h_R(r_-) \mathcal{O}_{\mathcal{G}T} |0\rangle \end{aligned}$$

⁴⁸ Ca	$^{76}\mathrm{Ge}$	⁸² Se	$^{96}\mathrm{Zr}$	¹⁰⁰ Mo	¹¹⁰ Pd
$Q_{\beta\beta}$ [MeV] 4.27226	2.03904	2.99512	3.35037	3.03440	2.01785
$G_{ss} [10^{-18} yr^{-1}] = 24\ 834.$	$2 \ 368.1$	$10\ 176.$	$20\ 621.$	15 953.	4 828.5
$G_{sr} [10^{-18} yr^{-1}] -4 \ 138.3$	-529.26	$-2 \ 499.4$	$-5 \ 929.3$	-4738.2	-1 504.8
$G_{rr} [10^{-18} yr^{-1}] = 690.26$	118.37	614.25	$1\ 705.7$	$1 \ 407.9$	469.16
$G_{sp} \left[10^{-18} yr^{-1} \right] -171.01$	-29.513	-152.98	-424.86	-350.88	-117.07
$G_{rp} [10^{-18} yr^{-1}] = 28.553$	6.6047	37.619	122.29	104.31	36.518
$G_{pp} \left[10^{-18} yr^{-1} \right] 1.1824$	0.36878	2.3055	8.7718	7.7325	2.8437
	¹¹⁶ Cd	124 Sn	¹³⁰ Te	¹³⁶ Xe	¹⁵⁰ Nd
Calculated phase-space	2.8135	2.28697	2.52697	2.45783	3.37138
factors for $0\nu\beta\beta$ -decay with emission of $s_{1/2}$ and $p_{1/2}$	16 734.	$9\ 063.5$	14 255.	14 619.	63 163.
electrons	-5 569.5	-3 082.8	$-5 \ 071.1$	$-5 \ 385.7$	$-26\ 409.$
(m _{ββ} mechanism)	1 854.5	$1 \ 049.0$	$1 \ 804.7$	$1 \ 984.9$	$11 \ 045.$
	-462.44	-261.74	-450.22	-495.23	-2754.1
	154.05	89.101	160.29	182.59	$1 \ 152.3$
5/11/2016	12.802	7.5711	14.242	16.803	120.25

Understanding of the 2vbb-decay is the key for reliable calculation of 0vbb-decay NMEs

