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• Nuclear structure methods for calculating these NME:

Nuclear Matrix Elements

Different ways to deal with:

 - Finding the best initial and final ground states.

 - Handling the transition operator (inclusion of most relevant terms, corrections, 
approximations, etc.).


Some remarks about these methods:

 - Calculations with limited single particle bases.

 - Difficulties to include collective/single particle degrees of freedom.

 - Problems with particle number/isospin conservation.
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Gogny EDF 

  Effective nucleon-nucleon interaction: Gogny force (D1S/D1M)

V (1, 2) =
2�

i=1

e�(⌥r1�⌥r2)
2/µ2

i (Wi + BiP
⇥ �HiP

⇤ �MiP
⇥P ⇤ )

+iW0(⇥1 + ⇥2)⌥k ⇥ �(⌥r1 � ⌥r2)⌥k

+t3(1 + x0P
⇥)�(�r1 � �r2)⇥� ((�r1 + �r2)/2)

+VCoulomb(⌅r1,⌅r2) 2-body potential

Density dependent ter
m
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  Effective nucleon-nucleon interaction: Gogny force (D1S/D1M)

V (1, 2) =
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Next step: Variational method!!!
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 (M. Anguiano et al., Nucl. Phys. A 683, 227 (2001))• Initial intrinsic states: PN-VAP M. Anguiano, J. L. Egido, and L. M. Robledo, Nucl. Phys. A 696, 467 (2001).

EN,Z [�] =
h�|Ĥ2bP̂

N P̂Z |�i
h�|P̂N P̂Z |�i

+ "N,Z
DD (�)� �q20h�|Q̂20|�i

EDF axial

http://dx.doi.org/10.1016/S0375-9474(01)01219-2
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EN,Z [�] =
h�|Ĥ2bP̂

N P̂Z |�i
h�|P̂N P̂Z |�i

+ "N,Z
DD (�)� �q20h�|Q̂20|�i

• Intermediate Particle Number and Angular Momentum Projected states

|I;NZ;�2i =
2I + 1

2

Z ⇡

0
dI⇤00(�)e

�i�Ĵy P̂N P̂Z |�i d�

EDF axial

http://dx.doi.org/10.1016/S0375-9474(01)01219-2
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• Final GCM states |I;NZ;�i =
X
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EDF axial

http://dx.doi.org/10.1016/S0375-9474(01)01219-2
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1. Axial states 

2. Angular momentum

3. Quadrupole deformations

4. Quadrupole and pairing  pp/nn correlations 

5. Quadrupole and pn correlations

6. Quadrupole and octupole deformations

I = 0
K = 0

q = q20

|0; NiZi; �� =
�

�i

G0;NiZi;�
�i

|�0;NiZi
i �

|0; NfZf ; �� =
�

�f

G
0;Nf Zf ;�
�f

|�0;Nf Zf

f �q = (q20, �)

q = (q20, q30)

EDF axial

q = (q20, p0)
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⇤ |0; NiZi; qi⇥�

�0; NfZf ; qf |0; NfZf ; qf ⇥�0; NiZi; qi|0; NiZi; qi⇥

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

4.5

2.5

0.5

0.5

0.5

0.5

0.0

1.0

2.0

3.0

4.0

5.0

6.0

GTF

� (150Nd)

�
(1

5
0
Sm

)

� (150Nd)
�

(1
5
0
Sm

)

NME: axial quadrupole deformation

T.R.R., Martínez-Pinedo, PRL 105, 252503 (2010)A=150



Tomás R. RodríguezRelevant degrees of freedom for 0νββ decay nuclear matrix elements with EDFTRIUMF double-beta decay workshop

1. EDF method 2. Multipole deformation 4. Seniority and SU(4)3. Pairing 5. Summary and open questions

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

0

1

2

1.5

0.5

0.5

0.5

- GT strength greater than Fermi.

- Similar deformation between mother and granddaughter is favored by the transition operators

- Maxima are found close to sphericity although some other local maxima are found

�0; NfZf ; qf |Ô0⇥��
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- Final result depends on the distribution of probability of the corresponding initial and final collective states within 
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FIG. 2: (Color online) Low-energy spectra of 150Nd and
150Sm. The numbers on arrows are E2 (solid line) and E3
(dashed line) transition strengths, in Weisskopf units. Data
are from Ref. [64].

FIG. 3: (Color online) Excitation energies of parity doublet
states in 150Nd (a) and 150Sm (b). The available data (!)
are compared with the GCM results (") and the results pro-
duced by the single-configuration of J = 0 energy minimum
(△) and by the configuration with deformation parameters de-
termined by measured transition strengths B(E2 : 0+1 → 2+1 )
and B(E3 : 0+1 → 3−1 ) (▽) [64].

and 150Sm. The octupole degree of freedom reduces the
E2 transition strengths between positive-parity states
significantly in both nuclei. It worsens the agreement in
150Nd but improves it in 150Sm. Our GCM describes the
negative-parity band built on the 1− state rather well, de-
spite overestimating the transition strengthB(E3 : 0+1 →
3−1 ) in

150Nd and underestimating it in 150Sm.
Figure 3 compares the GCM excitation energies with

those of two single-configuration calculations, one based
on the J = 0 energy minimum and the other on a state

FIG. 4: (Color online) Normalized nuclear matrix elements
M̃0ν(qI , qF ) for the neutrinoless double-beta decay of 150Nd,
where {q} ≡ {β2,β3}. Panel (a) plots M̃0ν versus the initial
and final octupole deformation parameters, with the quadru-
ple deformation parameters βI

2 and βF
2 fixed at 0.2 Panel (b)

plots the same quantity with the restriction βI
3 = βF

3 .

with deformation parameters determined by the experi-
mental B(E2 : 0+1 → 2+1 ) and B(E3 : 0+1 → 3−1 ) values
[64]. The GCM results are in much better agreement with
the data than are the single-configuration results. As spin
increases, however, the GCM increasingly over-predicts
the data, indicating that some important correlations
are missing. Time-reversal-symmetry-breaking reference
states, produced in a cranking calculation, would likely
lower the energies of high-spin states [65].
Figure 4 displays the normalized 0νββ matrix el-

ement between reference states, which we denote by
M̃0ν(qI , qF ):

M̃0ν(qI , qF )

≡
⟨qF |Ô0ν P̂ J=0P̂NI P̂ZIP π=+|qI⟩

√

N
0+
qI ,qIN

0+
qF ,qF

, (14)

with the norms N for each nucleus defined in Eq. (9).
The function M̃0ν(qI , qF ) represents the contribution of
particular initial and final configurations to the full ma-
trix element. Panel (a) of Fig. 4 plots the function in
the βI

3 ,β
F
3 plane, with βI

2 and βF
2 fixed at 0.2, the value

that minimizes the energy in both nuclei. The figure
shows that unequal octupole deformation in the two nu-
clei causes a rapid drop in the 0νββ matrix element.
Panel (b) of Fig. 4 extracts the behavior of M̃0ν from
the diagonal of panel (a), where the octupole deforma-
tion is the same size in both nuclei. Increasing deforma-
tion causes even this diagonal contribution to drop, from

NME: axial quadrupole plus octupole 
deformation

J. M. Yao and J. Engel, arXiv 1604.06297 (2016) 3

C. Nuclear matrix element for 0νββ decay

The 0νββ decay nuclear matrix element is

M0ν =
4πR

g2A(0)

∫ ∫

d3x1d
3x2

∫

d3q

(2π)3
eiq·(x1−x2)

q

×
∑

m

⟨0+F |J
†
µ (x1)|m⟩⟨m|J µ†(x2)|0

+
I ⟩

q + Em − (EI + EF )/2
, (10)

where J †
µ is the charge-changing nuclear current operator

[61] and q is the momentum transferred from leptons to
nucleons. The nuclear radius R = 1.2A1/3 makes the ma-
trix element dimensionless. In the closure approximation
and with the GCM state vectors from Eq. (7) as ground
states |0+I/F ⟩ of the initial and final nuclei, we obtain

M0ν =
∑

qI ,qF

f
0+
I

qI f
0+
F

qF ⟨qF |Ô
0ν P̂ J=0

00 P̂N P̂ZP̂ π=+|qI⟩ ,

(11)
with the transition operator given by

Ô0ν =
4πR

g2A(0)

∫

d3q

(2π)3

∫ ∫

d3x1d
3x2

eiq·(x1−x2)

q(q + Ed)

× [J †
µ (x1)J

µ†(x2)] , (12)

and Ed set to 1.12A1/2 ≃ 13.72 Mev [62].
The operator [J †

µ (x1)J µ†(x2)], when Fourier trans-
formed, contains the terms [46],

V V : g2V (q
2)

(

ψ̄γµτ−ψ
)(1) (

ψ̄γµτ−ψ
)(2)

(13)

AA : g2A(q
2)
(

ψ̄γµγ5τ−ψ
)(1) (

ψ̄γµγ5τ−ψ
)(2)

AP : 2gA(q
2)gP (q

2)
(

ψ̄γγ5τ−ψ
)(1) (

ψ̄qγ5τ−ψ
)(2)

PP : g2P (q
2)
(

ψ̄qγ5τ−ψ
)(1) (

ψ̄qγ5τ−ψ
)(2)

MM : g2M (q2)

(

ψ̄
σµi
2mN

qiτ−ψ

)(1) (

ψ̄
σµj

2mN
qjτ−ψ

)(2)

,

where τ− is the isospin lowering operator that changes
neutrons into protons, σµν = i

2 [γµ, γν ], and V,A, P,M
denote the vector, axial vector, pseudoscalar, and mag-
netic pieces of the one-nucleon current. Following Ref.
[63], we take the form factors gV (q2), gA(q2), gM (q2),

and gP (q2) to be V (q2) =
gV (0)

(1 + q2/Λ2
V )

2
, gA(q2) =

gA(0)

(1 + q2/Λ2
A)

2
, gP (q2) = gA(q2)

2mN

q2 +m2
π
(1 −

m2
π

Λ2
A

), and

gM (q2) = (µp − µn)gV (q2), with gV (0) = 1.0, gA(0) =
1.254, µp − µn = 3.70, Λ2

V = 0.710 (GeV)2, ΛA = 1.09
GeV, mN = 0.93827 GeV and mπ = 0.13957 GeV. For
the sake of simplicity, we neglect short-range correlations.
We include, alongside the generator coordinates from

Ref. [46], the octupole deformation parameter β3. The
parity breaking (and subsequent projection) and the
larger number of reference states caused by the inclu-
sion of octupole deformation increase computing time but

FIG. 1: (Color online) Mean-field energy surfaces for 150Nd
(a) and 150Sm (b), projected energy surfaces for 150Nd (c)
and 150Sm (d), and the square of the collective ground-state
wave function for 150Nd (e) and 150Sm (f), all in the β2-β3

plane.

otherwise cause no problems in our calculation. We ini-
tially include 50 reference states with β3 > 0. From this
set, 29 natural states turn out to sufficient to include
essentially all the contributions of the original 50 states
to both structure properties and 0νββ decay matrix ele-
ments.

III. RESULTS AND DISCUSSION

Figure 1 shows the mean-field and quantum-number-
projected energy surfaces, as well as the collective
wave functions |gJα(q)|

2, for the ground states of 150Nd
and 150Sm. The collective wave functions, defined

as gJπα (q) ≡
∑

q′
[

N Jπ
q,q′

]1/2
fJπα
q′ , provide information

about the importance of deformation with parameters q
in the state |Jπ

α ⟩. The mean-field energy surfaces in both
nuclei around the quadrupole-deformed minima with β2
around 0.2 are almost flat in the octupole direction. This
kind of surface often signifies a critical point symmetry
[5, 7, 11]. Our surface, however, is flat only before pro-
jection of the states that determine it onto the subspace
with Jπ = 0+ and well-defined N and Z; after projec-
tion it shows pronounced minima around β3 ∼ 0.1. In
addition, valleys connects the prolate and oblate min-
ima through octupole shapes in both nuclei, leading to
a reduction of quadrupole collectivity and large octupole
shape fluctuations.
Figure 2 shows the low-lying energy spectra in 150Nd
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FIG. 2: (Color online) Low-energy spectra of 150Nd and
150Sm. The numbers on arrows are E2 (solid line) and E3
(dashed line) transition strengths, in Weisskopf units. Data
are from Ref. [64].

FIG. 3: (Color online) Excitation energies of parity doublet
states in 150Nd (a) and 150Sm (b). The available data (!)
are compared with the GCM results (") and the results pro-
duced by the single-configuration of J = 0 energy minimum
(△) and by the configuration with deformation parameters de-
termined by measured transition strengths B(E2 : 0+1 → 2+1 )
and B(E3 : 0+1 → 3−1 ) (▽) [64].

and 150Sm. The octupole degree of freedom reduces the
E2 transition strengths between positive-parity states
significantly in both nuclei. It worsens the agreement in
150Nd but improves it in 150Sm. Our GCM describes the
negative-parity band built on the 1− state rather well, de-
spite overestimating the transition strengthB(E3 : 0+1 →
3−1 ) in

150Nd and underestimating it in 150Sm.
Figure 3 compares the GCM excitation energies with

those of two single-configuration calculations, one based
on the J = 0 energy minimum and the other on a state

FIG. 4: (Color online) Normalized nuclear matrix elements
M̃0ν(qI , qF ) for the neutrinoless double-beta decay of 150Nd,
where {q} ≡ {β2,β3}. Panel (a) plots M̃0ν versus the initial
and final octupole deformation parameters, with the quadru-
ple deformation parameters βI

2 and βF
2 fixed at 0.2 Panel (b)

plots the same quantity with the restriction βI
3 = βF

3 .

with deformation parameters determined by the experi-
mental B(E2 : 0+1 → 2+1 ) and B(E3 : 0+1 → 3−1 ) values
[64]. The GCM results are in much better agreement with
the data than are the single-configuration results. As spin
increases, however, the GCM increasingly over-predicts
the data, indicating that some important correlations
are missing. Time-reversal-symmetry-breaking reference
states, produced in a cranking calculation, would likely
lower the energies of high-spin states [65].
Figure 4 displays the normalized 0νββ matrix el-

ement between reference states, which we denote by
M̃0ν(qI , qF ):

M̃0ν(qI , qF )

≡
⟨qF |Ô0ν P̂ J=0P̂NI P̂ZIP π=+|qI⟩

√

N
0+
qI ,qIN

0+
qF ,qF

, (14)

with the norms N for each nucleus defined in Eq. (9).
The function M̃0ν(qI , qF ) represents the contribution of
particular initial and final configurations to the full ma-
trix element. Panel (a) of Fig. 4 plots the function in
the βI

3 ,β
F
3 plane, with βI

2 and βF
2 fixed at 0.2, the value

that minimizes the energy in both nuclei. The figure
shows that unequal octupole deformation in the two nu-
clei causes a rapid drop in the 0νββ matrix element.
Panel (b) of Fig. 4 extracts the behavior of M̃0ν from
the diagonal of panel (a), where the octupole deforma-
tion is the same size in both nuclei. Increasing deforma-
tion causes even this diagonal contribution to drop, from

NME: axial quadrupole plus octupole 
deformation

J. M. Yao and J. Engel, arXiv 1604.06297 (2016)

5

FIG. 5: (Color online) The final matrix element M0ν from
the GCM calculation with and without [46] octupole shape
fluctuations (REDF) and those of the QRPA (“QRPA F” [66],
“QRPA M” [45], “QRPA T” [47]), the IMB-2 [67], and the
non-relativistic GCM, based on the Gogny D1S interaction,
with [68] and without [44] pairing fluctuations.

6.4 to 2.2 as β3 increases to 0.3 At the configurations
that minimize the projected energies, with both values
of β2 about 0.2 and both values of β3 about 0.1, M̃0ν is
4.76. At the configuration that best fits the experimental
B(E2 : 0+1 → 2+1 ) and B(E3 : 0+1 → 3−1 ) values, corre-
sponding to deformation parameters βI

2 = 0.285,βI
3 =

0.113,βF
2 = 0.193,βF

3 = 0.145, M̃0ν is only 1.38.
As already discussed in Refs. [46, 48], M̃0ν near spher-

ical shapes is much larger than predicted by the Gogny
D1S interaction [44]. The difference arises at least in part
from a difference in average pairing gaps, which for the
neutrons in 150Nd and 150Sm are about 30% larger here
than in Ref. [44] (even though the gaps are similar at the
mean-field minima).
When all configurations are appropriately combined,

we obtain a final value for the matrix element M0ν(0+1 →
0+1 ) of 5.2, which is just 7% smaller than the result 5.6
obtained without octupole deformation [46]. (The con-
tributions from the V V,AA,AP, PP , and MM terms are
1.03, 4.87,−1.65, 0.70, and 0.21, respectively). The small
reduction, significantly less than what would result from
the use of the single configuration in each nucleus that
minimizes the energy (4.76) shows that shape fluctua-
tions wash out the effects of octupole deformation. For
the 0νββ decay to the excited 0+ state in 150Sm, we find

M0ν(0+1 → 0+2 ) = 0.72.

Figure 5 compares the ground-state to ground-state
matrix elements M0ν(0+1 → 0+1 ) from several models.
Our relativistic EDF-based GCM result is still about
twice those of the deformed quasiparticle random phase
approximation (QRPA) and the interacting boson model
(IBM), and about three times that of the non-relativistic
Gogny-based GCM. A more careful study of shell struc-
ture and pairing will help resolve the last discrepancy.
And we can expect both GCM matrix elements to shrink
once the isoscalar pairing amplitude is included as a gen-
erator coordinate [69, 70].

IV. SUMMARY

We have used covariant multi-reference density func-
tional theory to treat low-lying positive- and negative-
parity states in 150Nd and 150Sm. The GCM mixes
symmetry-projected states with different amounts of
quadrupole and octupole deformation. The results indi-
cate that octupole shape fluctuations significantly reduce
quadrupole collectivity in the low-lying states of both nu-
clei. Both static quadrupole and octupole deformation
quench the nuclear matrix element for 0νββ decay, but
shape fluctuations moderate the effect, so that adding
octupole degrees of freedom ends up reducing the matrix
element by only 7%.
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We are grateful to R. Rodŕıguez-Guzmán, C. F. Jiao,
and L. S. Song for fruitful discussions and to T. R.
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nuclear radius, inserted by convention to make the ma-
trix element dimensionless. The form factors hF(q) and
hGT(q) contain the vector and axial vector coupling con-
stants, forbidden corrections to the weak current, nucleon
form factors, and the “Argonne” short-range correlation
function [13]. See, e.g., Ref. [14] for details; note that
we absorb the inverse square of the axial-vector coupling
constant into our definition of hF .

To compute the matrix element in Eq. (1) we need
good representations of the initial and final ground states
|Ii and |F i. In this first application to A = 76 nuclei,
we construct the states in a Hilbert space consisting of
36 particles moving freely in the oscillator fp and sdg
shells. Our Hamiltonian has the form

H = h0 �
1X

µ=�1

gT=1
µ S†

µSµ � �

2

2X

K=�2

Q†
2KQ2K

� gT=0
1X

⌫=�1

P †
⌫P⌫ + gph

1X

µ,⌫=�1

Fµ†
⌫ Fµ

⌫ , (2)

where h0 contains spherical single particle energies, Q2K

are the components of a quadrupole operator defined in
Ref. [15], and

S†
µ =

1p
2

X

l

l̂[c†l c
†
l ]
001
00µ , P †

µ =
1p
2

X

l

l̂[c†l c
†
l ]
010
0µ0 ,

Fµ
⌫ =

1

2

X

i

�µ
i ⌧

⌫
i =

X

l

l̂[c†l c̄l]
011
0µ⌫ . (3)

In this last equation, c†l is a creation operator, l labels
single-particle multiplets with good orbital angular mo-
mentum, l̂ ⌘

p
2l + 1, S†

µ creates a correlated isovector
pair with orbital angular momentum L = 0 and spin
S = 0 (and with µ labeling the isospin component Tz),
P †
µ creates an isoscalar pn pair with L = 0 and S = 1

(Sz = µ), and the Fµ
⌫ are the components of the Gamow-

Teller operator. Although the Hamiltonian is not fully
realistic, it combines and extends both the SO(8) model
[16, 17] and the pairing-plus-quadrupole model [15, 18],
and contains the most important (collective) parts of
shell-model interaction [19]. We discuss the values of the
couplings in Eq. (2) shortly.

A direct diagonalization in a space this large is not
possible, even with our simple Hamiltonian, and we have
already discussed the drawbacks of the QRPA. We there-
fore turn to the GCM, which has been reviewed in many
places (see, e.g., Ref. [4]) and is useful in very-large-scale
shell-model problems. The procedure is variational, with
an ansatz for the ground state of the form

| i =
X

a1a2...an

f(a1, a2, . . . , an)P |a1, a2, . . . , ani . (4)

Here the kets |a1, a2, . . . , ani are mean-field states —
Slater determinants or, in our case, quasiparticle vacua
— with n expectation values ai specified, P is an operator

that projects onto states with well-defined values for an-
gular momentum and neutron and proton particle num-
bers, and f is a weight function. The starting point, if
we want to include the e↵ects of pn pairing, is a Hartree-
Fock-Bogoliubov (HFB) code that mixes neutrons and
protons in the quasiparticles, i.e. (schematically):

↵† ⇠ upc
†
p + vpcp + unc

†
n + vncn . (5)

The actual equations contain sums over single particle
states as well, so that each of the u’s and v’s above are
replaced by matrices as described, e.g., in Ref. [20].
We use the generalized HFB (neglecting the Fock terms

in this step) without any symmetry restriction to con-
struct a set of quasiparticle vacua that are constrained
to have a particular deformation � (defined here as
0.438 fm2 MeV�1 � hQ20i) and isoscalar-pairing ampli-
tude � = hP0 + P †

0 i /2 (these are the ai in Eq. (4)), that
is, we solve the HFB equations for the Hamiltonian with
linear constraints

H 0 = H��ZNZ��NNN��QQ20�
�P

2

⇣
P0 + P †

0

⌘
, (6)

where the NZ and NN are the proton and neutron num-
ber operators — they are part of the usual HFB min-
imization — and the other �’s are Lagrange multipli-
ers to fix the deformation and isoscalar pairing ampli-
tude. (When computing the Fermi part of the 0⌫��
matrix element we substitute the isovector pn operators
(S0 � S†

0)/2i for (P0 + P †
0 )/2 in Eq. (6).) As already

noted, without the last multiplier the isoscalar pairing
amplitude vanishes unless the strength gT=0 of the cor-
responding interaction is larger than some critical value.
For realistic Hamiltonians that is never the case, hence
the need to generate amplitudes by force, as it were.
Having obtained a set of HFB vacua with varying

amounts of axially symmetric deformation and pn pair-
ing, we project the vacua onto states with the correct
number of neutrons and protons and with angular mo-
mentum zero. We then solve the Hill-Wheeler equa-
tion [4], which amounts to diagonalizing H in the space
spanned by our nonorthogonal projected vacua, to deter-
mine the weight function f in Eq. (4).
To carry out a fairly realistic calculation, we need ap-

propriate values for the couplings in the Hamiltonian of
Eq. (2). We determine them by trying to reproduce the
results of calculations with two di↵erent Skyrme interac-
tions (SkO0 [21] and SkM* [22]) in 76Ge and neighbor-
ing nuclei. We first do Skyrme-HFB calculations [23] in
76Ge to determine appropriate volume pairing constants.
We then take single-particle energies for each nucleus,
which we show for SkO0 in Table I, from the results of
constrained HFB calculations for 76Ge and 76Se, which
we temporarily force to be spherical. Next we adjust
the like-particle part of our isovector pairing interaction
(gT=1

1 and gT=1
�1 ) to get the same pairing gaps as the

original Skyrme calculations. The resulting occupation
numbers are close to the spherical Skyrme-HFB numbers
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4

TABLE II. The 0⌫�� matrix element M0⌫ for the decay of
76Ge in a simplified calculation that neglects deformation, at
various levels of approximation. The first column contains the
source of the couplings in Eq. (2), the second the matrix ele-
ment when the spin-isospin and isoscalar pairing interactions
are absent, the third the matrix element with only isoscalar
pairing missing, the fourth the full GCM result, and the last
the result of the QRPA with the same Hamiltonian (except
for a slightly modified gT=0). The matrix elements in paren-
theses are obtained by quenching our B(GT+).

Skyrme no gph, g
T=0 no gT=0 full QRPA

SkO0 14.0 9.5 5.4 (5.4) 5.6 (5.0)

SkM* 11.8 9.4 4.1 (2.8) 3.5 (2.5)

called gpp when divided by ḡT=1) in exactly the same
way. The values we obtain are only slightly di↵erent.
The last column of Table II contains the QRPA 0⌫��
matrix elements. They are fairly close to those of the
GCM calculation, but much more sensitive to gT=0.

To clarify this last statement, we show the GCM and
QRPA matrix elements as functions of gT=0/ḡT=1 in Fig.
2. The QRPA curves lie slightly above their GCM coun-
terparts until gT=0/ḡT=1 reaches a critical value slightly
larger than 1.5; at that point a mean-field phase tran-
sition from an isovector pair condensate to an isoscalar
condensate causes the famous QRPA “collapse.” The col-
lapse is spurious, as the GCM results show. Its presence
in mean-field theory makes the QRPA unreliable near the
critical point. It is actually a bit of a coincidence that
the QRPA matrix elements in the table are as close as
they are to those of the GCM; a small change in gT=0

would a↵ect them substantially (though because it also
alters B(GT+) a lot, fitting to B(GT+) = 0.62 rather
than 1.0 does not have a huge e↵ect on the 0⌫�� matrix
element). The GCM result is not only better behaved
near the critical point but also, we believe, quite accu-
rate. In the SO(8) model used to test many-body meth-
ods in �� decay many times, the GCM result is nearly
exact for all gT=0. That is not the case for extensions of
the QRPA that attempt to ameliorate its shortcomings
[32, 33], though some of those work better around the
phase transition than others.

To show why the GCM behaves well, we display
in the bottom right part of Fig. 3 the quantity
N�IN�F h�F | PF M̂0⌫PI |�Ii, where |�Ii is a quasiparti-
cle vacuum in 76Ge constrained to have isoscalar pairing
amplitude �I , �F is an analogous state in 76Se, PI , PF

project onto states with angular momentum zero and the
appropriate values of Z and N , and N�I ,N�F normalize
the projected states. This quantity is the contribution to
the 0⌫�� matrix element from states with particular val-
ues of the initial and final isoscalar pairing amplitudes.
The contribution is positive around zero condensation in
the two nuclei and negative when the final pairing ampli-
tude is large. Thus the GCM states must contain compo-
nents with significant pn pairing when gT=0 is near its fit
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FIG. 2. (Color online.) Dependence of the GCM (solid) and
QRPA (dashed) 0⌫�� matrix elements on the strength gT=0

of the isoscalar pairing interaction. The red (upper) and blue
(lower) lines of each type correspond to the interaction pa-
rameters extracted from SkO0 and SkM*. The divergence in
the QRPA near gT=0/ḡT=1 = 1.5 is discussed in the text.

value. The appearance of this plot is di↵erent from those
in which the matrix element is plotted versus initial and
final deformation [6–8]. Here the matrix element is small
or negative even if the initial and final pairing ampli-
tudes have the same value, as long as that value is large.
The behavior reflects the qualitatively di↵erent e↵ects of
isovector and isoscalar pairs on the matrix element [3],
e↵ects that have no analog in the realm of deformation.
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N�IN�F h�F | PF M̂0⌫PI |�Ii for projected quasiparticle
vacua with di↵erent values of the initial and final isoscalar
pairing amplitudes �I and �F , from the SkO0-based interac-
tion (see text). Top and bottom left: Square of collective
wave functions in 76Ge and 76Se.
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Where do the differences between SM and GCM come from?
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FIG. 1. (Color online) Gamow-Teller part of the nuclear matrix element, M0ν
GT, for Ca→Ti (a), Ti→Cr (b) and Cr→Fe (c) 0νββ decays,

calculated with shell model (SM) and energy density functional (EDF) methods. The D1S EDF interaction is used (circles). In the SM case,
the KB3G (squares) and GXPF1A (lozenges) effective interactions are employed.

Refs. [31,50]. Maxima are more marked in SM calculations,
where the initial and final states share the same isospin
quantum number, T . In the SM case the two states are exactly
isospin-symmetric, because Coulomb and isospin-symmetry-
breaking terms in the nuclear interaction are neglected, but the
overlap between mirror initial and final states is also maximal
in the EDF approach, which includes the Coulomb term. For
EDF calculations, however, T is not a good quantum number.

The configuration space and nuclear correlations included
in SM and EDF calculations are very different, with the SM
being able to take into account more general correlations but
in a rather limited valence space. Regarding the size of the
configuration space it is important to note that in the pf shell
the SM includes all orbitals with their corresponding spin-
orbit partner. This is relevant because in the 0νββ decay of
heavier nuclei, some spin-orbit partners are not included in
SM calculations, and this has been pointed out as a possible
cause of the relatively small SM NMEs. The SM calculations
analyzed in this work are thus free from this shortcoming.

We can get more insight in the comparison of SM and
EDF NMEs by simplifying the nuclear structure correlations
present in the initial and final states of the 0νββ decay. Figure 2
shows M0ν

GT calculated with the same transition operator as
Fig. 1, but with simplified nuclear states. For the EDF, spherical
symmetry is assumed. In the SM case, only configurations
with zero seniority (s = 0) are permitted, this is, protons and
neutrons are coupled in J = 0 pairs; no proton-neutron J =
0 pairs are included. We observe that the GT parts of the
NMEs calculated in these simplified schemes are significantly
larger than in the full calculation for both approaches, with a

striking agreement between SM and EDF NMEs. Indeed SM
GXPF1A calculations lie within 10% of EDF values, while
SM KB3G calculations are about 25% larger. The difference
between the two SM results stems from the different J = 0,
T = 1 pairing. As shown in Fig. 1, this difference between
effective interactions is washed out when full calculations are
performed. The agreement between SM and EDF NMEs is in
strong contrast with the full NME calculations shown in Fig. 1,
where SM NMEs were half of the EDF values.

This implies that the spherical EDF and seniority-zero
SM calculations, while conceptually very different, capture
approximately the same physics, leaving out the nuclear
structure correlations that reduce the 0νββ decay NMEs.
Some of these have been identified in Refs. [15,17,31] as the
correlations associated with high-seniority components in the
SM, and collective deformation effects in EDF calculations.
High seniority components have been also studied within the
QRPA in Ref. [21].

Figure 2 also shows that the trends followed by the NMEs
calculated in both approaches are very similar, and indeed
they follow to a good approximation the generalized seniority
scheme in a single shell [51]:

M0ν
GT ≃ απαν

√
Nπ + 1

√
%π − Nπ

√
Nν

√
%ν − Nν + 1,

(6)

where Nπ(ν) is the number of proton (neutron) pairs in the shell,
%π(ν) the pair degeneracy and απ(ν) coefficients characteristic
of a major shell. Deviations from Eq. (6) are due to nonperfect
shell closures and the A dependence in the neutrino potentials.
The “inverted parabola” from initial number of neutrons
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FIG. 2. (Color online) Gamow-Teller part of the nuclear matrix element, M0ν
GT, for Ca→Ti (a), Ti→Cr (b), and Cr→Fe (c) 0νββ decays,

with seniority-zero shell model (SM) and spherical energy density functional (EDF) states. Interactions are as in Fig. 1.
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FIG. 1. (Color online) Gamow-Teller part of the nuclear matrix element, M0ν
GT, for Ca→Ti (a), Ti→Cr (b) and Cr→Fe (c) 0νββ decays,

calculated with shell model (SM) and energy density functional (EDF) methods. The D1S EDF interaction is used (circles). In the SM case,
the KB3G (squares) and GXPF1A (lozenges) effective interactions are employed.

Refs. [31,50]. Maxima are more marked in SM calculations,
where the initial and final states share the same isospin
quantum number, T . In the SM case the two states are exactly
isospin-symmetric, because Coulomb and isospin-symmetry-
breaking terms in the nuclear interaction are neglected, but the
overlap between mirror initial and final states is also maximal
in the EDF approach, which includes the Coulomb term. For
EDF calculations, however, T is not a good quantum number.

The configuration space and nuclear correlations included
in SM and EDF calculations are very different, with the SM
being able to take into account more general correlations but
in a rather limited valence space. Regarding the size of the
configuration space it is important to note that in the pf shell
the SM includes all orbitals with their corresponding spin-
orbit partner. This is relevant because in the 0νββ decay of
heavier nuclei, some spin-orbit partners are not included in
SM calculations, and this has been pointed out as a possible
cause of the relatively small SM NMEs. The SM calculations
analyzed in this work are thus free from this shortcoming.

We can get more insight in the comparison of SM and
EDF NMEs by simplifying the nuclear structure correlations
present in the initial and final states of the 0νββ decay. Figure 2
shows M0ν

GT calculated with the same transition operator as
Fig. 1, but with simplified nuclear states. For the EDF, spherical
symmetry is assumed. In the SM case, only configurations
with zero seniority (s = 0) are permitted, this is, protons and
neutrons are coupled in J = 0 pairs; no proton-neutron J =
0 pairs are included. We observe that the GT parts of the
NMEs calculated in these simplified schemes are significantly
larger than in the full calculation for both approaches, with a

striking agreement between SM and EDF NMEs. Indeed SM
GXPF1A calculations lie within 10% of EDF values, while
SM KB3G calculations are about 25% larger. The difference
between the two SM results stems from the different J = 0,
T = 1 pairing. As shown in Fig. 1, this difference between
effective interactions is washed out when full calculations are
performed. The agreement between SM and EDF NMEs is in
strong contrast with the full NME calculations shown in Fig. 1,
where SM NMEs were half of the EDF values.

This implies that the spherical EDF and seniority-zero
SM calculations, while conceptually very different, capture
approximately the same physics, leaving out the nuclear
structure correlations that reduce the 0νββ decay NMEs.
Some of these have been identified in Refs. [15,17,31] as the
correlations associated with high-seniority components in the
SM, and collective deformation effects in EDF calculations.
High seniority components have been also studied within the
QRPA in Ref. [21].

Figure 2 also shows that the trends followed by the NMEs
calculated in both approaches are very similar, and indeed
they follow to a good approximation the generalized seniority
scheme in a single shell [51]:

M0ν
GT ≃ απαν

√
Nπ + 1

√
%π − Nπ

√
Nν

√
%ν − Nν + 1,

(6)

where Nπ(ν) is the number of proton (neutron) pairs in the shell,
%π(ν) the pair degeneracy and απ(ν) coefficients characteristic
of a major shell. Deviations from Eq. (6) are due to nonperfect
shell closures and the A dependence in the neutrino potentials.
The “inverted parabola” from initial number of neutrons
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FIG. 2. (Color online) Gamow-Teller part of the nuclear matrix element, M0ν
GT, for Ca→Ti (a), Ti→Cr (b), and Cr→Fe (c) 0νββ decays,

with seniority-zero shell model (SM) and spherical energy density functional (EDF) states. Interactions are as in Fig. 1.
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- NMEs are reduced with respect to the 
spherical value when correlations are included.


- The biggest reduction is produced by angular 
momentum restoration and configuration 
mixing produces an increase of the NME.


- Cross-check nuclei: 42Ca, 50Ca, 56Fe J. Menéndez, T. R. R., A. Poves, G. Martínez-Pinedo, PRC 90, 024311 (2014).
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corresponding PES to calculate the NMEs (EDFmin). Finally,
the full EDF calculation uses self-consistent shape mixing of
the collective states, within the GCM framework, to obtain the
NMEs (EDFfull).

Figure 3 shows that the M0ν
GT pattern found with EDF

spherical states disappears when PES minima are used.
Moreover, the NMEs are significantly reduced when the
deformation effects are included. Furthermore, the full EDF
NMEs roughly follow the trends of the PES minima solution,
and configuration (shape) mixing only produces a shift to
larger values, which is larger in the Ti and Cr decays after
the neutron f7/2 orbital is filled.

Figure 4 compares SM calculations of NMEs obtained
using the KB3G interaction with seniority-zero initial and
final states and the full pf calculation. In addition, NMEs for
the exact isospin projection of seniority-zero states are also
compared. The left-hand panels in Figure 4—panels (a), (c),
and (e)—show that the Fermi components of the NMEs are
strongly reduced when projection to good isospin is performed.
Therefore, 0νββ decay calculations where isospin symmetry is
not conserved are expected to significantly overestimate M0ν

F .
In particular the ratio of Fermi to GT components, defined
as χF = (gV /gA)2M0ν

F /M0ν
GT, is reduced from −χF ∼ 0.3, for

seniority-zero calculations without good isospin, to −χF ∼
0.15, for the complete pf results where isospin symmetry is
conserved. Typical χF values obtained in QRPA and IBM cal-
culations are −χF ∼ 0.3, . . . ,0.4 [19,22], while EDF values
range −χF ∼ 0.20, . . . ,0.25. The sizable χF values reflect the
isospin nonconservation of these calculations. Very recently
Ref. [19] attempted an approximate restoration of isospin
symmetry in the context of the QRPA, leading to a reduction
of Fermi matrix elements up to −χF ∼ 0.20, . . . ,0.25.

On the other hand, the right-hand panels in Fig. 4—panels
(b), (d), and (f)—show that isospin projection is only a small
correction to M0ν

GT. For the GT component, the reduction
is maximal at N = Z nuclei, and non-negligible in general,
but it becomes very minor in the most neutron-rich systems.
Therefore, the impact of isospin projection to M0ν

GT is expected
to be modest. The correlations associated with high-seniority
components in the initial and final states are responsible for the
strong reduction of M0ν

GT, and these correlations also wash out
the trend which appears with seniority-zero initial and final
states. In addition, it follows from Figs. 3 and 4 that these
correlations reduce the NMEs more significantly than the ones
associated with collective deformation in the EDF approach.

Figure 5 gives a detailed account of the evolution of the
SM M0ν

GT and M0ν
F parts of the NMEs as a function of the

maximum seniority allowed in the initial and final nuclear
states. This figure shows that for the 50Ca→50Ti 0νββ decay,
which relates two semimagic nuclei, seniority components
up to s = 4 are necessary for a reliable M0ν

GT and M0ν
F

calculation. The seniority decomposition of the full SM states
in s = 0/s = 4/s > 4 components is 97%/3%/0% for 50Ca
and 77%/21%/2% for 50Ti. On the other hand, higher seniority
components up to s = 8 are needed in the 48Ti→48Cr decay.
In this case the decomposition in seniority is 58%/37%/5%
for the s = 0/s = 4/s > 4 parts in 48Ti and 27%/42%/31%
for 48Cr. High-seniority components are therefore associated
with the description of the deformed 48Cr.
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FIG. 5. (Color online) Gamow-Teller [M0ν
GT, panels (a),(b)] and

Fermi [M0ν
F , panels (c),(d)] parts of the nuclear matrix element of the

0νββ decays of 50Ca→50Ti [panels (a),(c)] and 48Ti→48Cr [panels
(b),(d)]. Shell model (SM) results are shown as a function of the
maximum seniority permitted in the initial and final states (squares),
and also after isospin projection (circles). Energy density functional
(EDF) results using spherical initial and final states (dashed lines)
and the full EDF calculation (dashed-dotted lines) are also shown.
The EDF Gogny D1S and SM KB3G interactions are used.

Spherical and full EDF results are also shown in Fig. 5.
We have discussed above that spherical EDF results roughly
correspond to seniority-zero SM calculations. However, the
full EDF NMEs behave quite differently in the two decays
shown in in Fig. 5. For 50Ca→50Ti decay, the final EDF number
agrees with the results of the spherical NME calculation.
This is due to the semimagic character of the initial and
final states, which prevents any collective correlation in these
nuclei (this also applies to the 42Ca→42Ti decay). In contrast,
the full NMEs for the 48Ti→48Cr decay get contributions
from collective deformation and shape mixing. These final
NMEs are roughly equivalent to the SM s = 6 results.
This suggests that correlations associated to high-seniority
components in the SM are not completely captured in EDF
calculations. These could be partially responsible for the
differences between SM and EDF NMEs shown in Fig. 1.
Since the EDF states are built as linear combinations of
projected Hartree-Fock-Bogoliubov-type states with different
axial quadrupole deformations, these intrinsic states are fully
paired—in time-reversed single-particle orbits—by definition.
Therefore, pair-breaking in the seniority scheme is obtained
by deforming the system, but not by including explicitly
quasiparticle excitations on top of each intrinsic state. A step
further, beyond the scope of this work, would include on
equal footing both pair-breaking mechanisms into the GCM
framework, and study their influence in the NMEs.
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corresponding PES to calculate the NMEs (EDFmin). Finally,
the full EDF calculation uses self-consistent shape mixing of
the collective states, within the GCM framework, to obtain the
NMEs (EDFfull).

Figure 3 shows that the M0ν
GT pattern found with EDF

spherical states disappears when PES minima are used.
Moreover, the NMEs are significantly reduced when the
deformation effects are included. Furthermore, the full EDF
NMEs roughly follow the trends of the PES minima solution,
and configuration (shape) mixing only produces a shift to
larger values, which is larger in the Ti and Cr decays after
the neutron f7/2 orbital is filled.

Figure 4 compares SM calculations of NMEs obtained
using the KB3G interaction with seniority-zero initial and
final states and the full pf calculation. In addition, NMEs for
the exact isospin projection of seniority-zero states are also
compared. The left-hand panels in Figure 4—panels (a), (c),
and (e)—show that the Fermi components of the NMEs are
strongly reduced when projection to good isospin is performed.
Therefore, 0νββ decay calculations where isospin symmetry is
not conserved are expected to significantly overestimate M0ν

F .
In particular the ratio of Fermi to GT components, defined
as χF = (gV /gA)2M0ν

F /M0ν
GT, is reduced from −χF ∼ 0.3, for

seniority-zero calculations without good isospin, to −χF ∼
0.15, for the complete pf results where isospin symmetry is
conserved. Typical χF values obtained in QRPA and IBM cal-
culations are −χF ∼ 0.3, . . . ,0.4 [19,22], while EDF values
range −χF ∼ 0.20, . . . ,0.25. The sizable χF values reflect the
isospin nonconservation of these calculations. Very recently
Ref. [19] attempted an approximate restoration of isospin
symmetry in the context of the QRPA, leading to a reduction
of Fermi matrix elements up to −χF ∼ 0.20, . . . ,0.25.

On the other hand, the right-hand panels in Fig. 4—panels
(b), (d), and (f)—show that isospin projection is only a small
correction to M0ν

GT. For the GT component, the reduction
is maximal at N = Z nuclei, and non-negligible in general,
but it becomes very minor in the most neutron-rich systems.
Therefore, the impact of isospin projection to M0ν

GT is expected
to be modest. The correlations associated with high-seniority
components in the initial and final states are responsible for the
strong reduction of M0ν

GT, and these correlations also wash out
the trend which appears with seniority-zero initial and final
states. In addition, it follows from Figs. 3 and 4 that these
correlations reduce the NMEs more significantly than the ones
associated with collective deformation in the EDF approach.

Figure 5 gives a detailed account of the evolution of the
SM M0ν

GT and M0ν
F parts of the NMEs as a function of the

maximum seniority allowed in the initial and final nuclear
states. This figure shows that for the 50Ca→50Ti 0νββ decay,
which relates two semimagic nuclei, seniority components
up to s = 4 are necessary for a reliable M0ν

GT and M0ν
F

calculation. The seniority decomposition of the full SM states
in s = 0/s = 4/s > 4 components is 97%/3%/0% for 50Ca
and 77%/21%/2% for 50Ti. On the other hand, higher seniority
components up to s = 8 are needed in the 48Ti→48Cr decay.
In this case the decomposition in seniority is 58%/37%/5%
for the s = 0/s = 4/s > 4 parts in 48Ti and 27%/42%/31%
for 48Cr. High-seniority components are therefore associated
with the description of the deformed 48Cr.
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FIG. 5. (Color online) Gamow-Teller [M0ν
GT, panels (a),(b)] and

Fermi [M0ν
F , panels (c),(d)] parts of the nuclear matrix element of the

0νββ decays of 50Ca→50Ti [panels (a),(c)] and 48Ti→48Cr [panels
(b),(d)]. Shell model (SM) results are shown as a function of the
maximum seniority permitted in the initial and final states (squares),
and also after isospin projection (circles). Energy density functional
(EDF) results using spherical initial and final states (dashed lines)
and the full EDF calculation (dashed-dotted lines) are also shown.
The EDF Gogny D1S and SM KB3G interactions are used.

Spherical and full EDF results are also shown in Fig. 5.
We have discussed above that spherical EDF results roughly
correspond to seniority-zero SM calculations. However, the
full EDF NMEs behave quite differently in the two decays
shown in in Fig. 5. For 50Ca→50Ti decay, the final EDF number
agrees with the results of the spherical NME calculation.
This is due to the semimagic character of the initial and
final states, which prevents any collective correlation in these
nuclei (this also applies to the 42Ca→42Ti decay). In contrast,
the full NMEs for the 48Ti→48Cr decay get contributions
from collective deformation and shape mixing. These final
NMEs are roughly equivalent to the SM s = 6 results.
This suggests that correlations associated to high-seniority
components in the SM are not completely captured in EDF
calculations. These could be partially responsible for the
differences between SM and EDF NMEs shown in Fig. 1.
Since the EDF states are built as linear combinations of
projected Hartree-Fock-Bogoliubov-type states with different
axial quadrupole deformations, these intrinsic states are fully
paired—in time-reversed single-particle orbits—by definition.
Therefore, pair-breaking in the seniority scheme is obtained
by deforming the system, but not by including explicitly
quasiparticle excitations on top of each intrinsic state. A step
further, beyond the scope of this work, would include on
equal footing both pair-breaking mechanisms into the GCM
framework, and study their influence in the NMEs.
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- The biggest reduction (in Shell 
model calculations) is produced by 
including higher seniority 
components in the nuclear wave 
functions.


- Isospin projection is relevant for the 
Fermi part of the NME and less 
important for the Gamow-Teller part.


- EDF does not include properly those 
higher seniority components, 
specially in spherical nuclei.


- p-n pairing effects could also be 
important in the reduction of the 
NME.
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shell. This Hamiltonian employs a monopole interaction and
collective pieces: isovector J = 0 and isoscalar J = 1 pairing
terms, a quadrupole-quadrupole term, and a spin-isospin
term. We compare the 0νββ decay matrix elements that this
interaction produces with those produced by the full shell
model interaction in the Ca, Ti, and Cr isotopic chains (heavier
elements are computationally more demanding, as well as
more sensitive to orbitals beyond the pf shell), and identify the
most relevant collective correlations for ββ decay. Second, we
use the collective interaction within a GCM calculation that
includes the isoscalar pairing amplitude and the quadrupole
moment as generator coordinates, and compare the resulting
0νββ decay matrix elements to those of the shell model.
Finally, we try to assess the degree to which our conclusions
hold for the heavier nuclei in which ββ decay could be detected
in next-generation experiments.

The rest of this paper is structured as follows. Section II
describes the extraction of the separable collective interaction
and discusses each of its components. Section III briefly
presents the 0νββ decay operator and compares the matrix
elements, calculated in the shell model with both the full and
collective Hamiltonians, for isotopes of Ca, Ti, and Cr. It also
shows GCM matrix elements for the same nuclei, calculated
with the same collective interaction, and finally discusses the
matrix elements for heavier nuclei that are of real interest for
0νββ decay experiments. Section IV is a conclusion.

II. SEPARABLE COLLECTIVE INTERACTION

We work in the pf -shell configuration space, comprising
the 0f7/2, 1p3/2, 1p1/2, and 0f5/2 orbitals. As a reference
Hamiltonian we use the shell model interaction KB3G [19],
which has been extensively tested throughout the pf shell.
This interaction provides a very good description of nu-
clear structure, including spectroscopy, electromagnetic and
Gamow-Teller transitions, and deformation [15]. Then, follow-
ing the work of Dufour and Zuker [18], we build the separable
collective Hamiltonian that best approximates KB3G. Roughly
speaking, Ref. [18] determines the structure of the lowest-lying
collective states in the particle-hole and pairing representations
with a given angular momentum J , isospin T , and parity π , and
then constructs a series of separable terms, with appropriate
strengths, that reproduce those states. Dufour and Zuker find
that the most important terms in the particle-hole channel are
the isoscalar quadrupole and spin-isospin (στστ ) interactions,
and in the pairing channel the isovector J π = 0+ and isoscalar
J π = 1+ interactions.

The separable collective Hamiltonian, Hcoll, that includes
the full monopole piece of the KB3G interaction and the
dominant collective terms found by Dufour and Zuker has
the form

Hcoll = HM + gT =1
1∑

n=−1

S†
nSn + gT =0

1∑

m=−1

P †
mPm

+ gph

1∑

m,n=−1

: F†
mnFmn : +χ

2∑

µ=−2

: Q†
µQµ : , (1)

TABLE I. Strengths (in MeV) of the isovector pairing (gT =1),
isoscalar paring (gT =0), spin-isospin (gph), and quadrupole (χ )
interactions in the separable collective Hamiltonian Hcoll [Eq. (1)].
The values are taken from Ref. [18] and scaled to nucleon number A =
42. For heavier isotopes the strengths are multiplied by (42/A)1/3.

gT =1 gT =0 gph χ

−0.377 −0.587 0.057 −0.141

where the colons indicate normal ordering. The monopole
Hamiltonian HM includes two-body terms and one-body
(single-particle) energies, both taken from KB3G. In addition

S†
n = 1√

2

∑

α

√
2lα + 1(a†

αa†
α)0,0,1

0,0,n,

P †
m = 1√

2

∑

α

√
2lα + 1(a†

αa†
α)0,1,0

0,m,0,

(2)
Fmn = 2

∑

α

√
2lα + 1(a†

α ãα)0,1,1
0,m,n,

Qµ = 1√
5

∑

α,β

⟨nαlα||r2Y2/b
2||nβ lβ⟩(a†

α ãβ)2,0,0
µ,0,0,

where Fmn, written in first quantization, is just
∑

i σm(i)τn(i),
b is the usual oscillator parameter, a†

α creates a nucleon in
a single-particle orbital with principal quantum number nα

and orbital angular momentum lα , and ãa destroys a nucleon
in the time-reversed orbital [more precisely, ãlα ,mα ,sα ,τα

≡
(−1)lα+1−mα−sα−ταalα ,−mα ,sα ,−τα

, where mα is the z component
of the orbital angular momentum, sα is the z component of the
spin, and τα is the z component of the isospin]. The superscripts
following the parentheses stand for the two-particle orbital
angular momentum, spin, and isospin, and the subscripts for
their z components. The strengths of the various terms, gT =1,
gT =0, gph, and χ , are taken from Ref. [18] and appear in Table I
for mass A = 42 (they scale with A−1/3). Note that the pairing
and quadrupole-quadrupole terms are attractive, as expected.
Reference [20] uses a similar collective Hamiltonian, also
based on the decomposition in Ref. [18], but without the
spin-isospin term, to study the competition between isovector
and isoscalar pairing in pf -shell nuclei.

The significance of the various terms in Hcoll is as follows:
The monopole Hamiltonian HM adds effective neutron- and
proton-number-dependent effective single-particle energies
to the bare energies. The remaining terms are collective—
an isovector spin-0 pairing interaction, an isoscalar spin-1
pairing interaction, a quadrupole-quadrupole interaction, and
a Landau-Migdal-style spin-isospin interaction. Many studies
of nuclear collectivity (e.g., [21–23]) include only isovec-
tor pairing (usually without the proton-neutron part) and
quadrupole-quadrupole terms. And isoscalar pairing is fre-
quently downplayed. Among the models studying 0νββ decay
matrix elements, the EDF-based GCM and the IBM have not
yet included isoscalar pairing explicitly.

According to Ref. [18], the terms included in Hcoll are
the most important for pf -shell nuclei (we could also have
included, for example, an isovector quadrupole-quadrupole
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FIG. 2. Gamow-Teller part of the 0νββ decay matrix elements
MGT

0ν , for the decay of Ca isotopes into Ti as a function of the neutron
number Nparent in the parent nucleus. Results are shown for the KB3G
interaction (black circles, solid line), the full collective interaction
Hcoll (red circles, dashed line), Hcoll with the quadrupole-quadrupole
term removed (purple squares, dotted line), Hcoll with the isoscalar
pairing term removed (blue squares, short-dashed line), and Hcoll with
both the isoscalar-pairing and spin-isospin pieces removed (orange
squares, dot-dashed line).

15%–20%. That result is consistent with those of previous
studies [9,34–36] that note a small matrix element when the
parent and daughter have different quadrupole properties.

Perhaps the most striking feature of Fig. 2 is the suppression
of the matrix elements by isoscalar pairing. Removing that
term from the Hamiltonian increases the matrix elements by
more than a factor of two (closer to three in many isotopes),
or between 1 and 2 units. When, in addition, the spin-isospin
term is removed, the matrix elements grow even further. As
Fig. 3 shows, the large effect of isoscalar pairing is common to
the matrix elements of all the Ca, Ti, and Cr isotopes we study,
from those with N ∼ Z to very neutron-rich nuclei. For the
matrix elements of the most isospin-asymmetric nuclei ( 58Ca
and 60Ca) the effect of isoscalar pairing is somewhat milder
but still important. The sensitivity to isoscalar (proton-neutron)
pairing is familiar from QRPA [37,38] and GCM studies [14]
and makes it clear that a good description of proton-neutron
correlations is crucial to obtain accurate 0νββ decay nuclear
matrix elements.

The significance of isoscalar pairing is not quite as straight-
forward as it first appears, however. The matrix elements
vary just about 10% when only the spin-isospin interaction
is omitted from Hcoll. As Fig. 2 shows, when the spin-isospin
term is included in the separable collective Hamiltonian, the
impact of omitting isoscalar pairing, though still significant, is
smaller than with the spin-isospin term excluded. This result
suggests that the missing isoscalar-pairing correlations can
to some extent be compensated for, or captured, by other
collective interactions. In that sense, we can consider the
dramatic changes in the matrix elements shown in Figs. 2

FIG. 3. Gamow-Teller part of the 0νββ decay matrix elements,
MGT

0ν , for the decay of Ti isotopes into Cr (top panel), and Cr isotopes
into Fe (bottom), as a function of the neutron number Nparent of the
parent nucleus. Results are shown for the KB3G interaction (black,
solid line), the collective interaction Hcoll (red, dashed line), and Hcoll

without the isoscalar pairing term (blue, short-dashed line).

and 3 to be an upper bound for the effects of isoscalar
pairing. Pieces of the nuclear Hamiltonian, both collective
and noncollective, that are not included in Hcoll might soften
the impact of omitting isoscalar-pairing, in the same way that
the spin-isospin interaction does.

The impact of isoscalar pairing correlations in 0νββ decay
is undeniable. One way to understand it is through spin-
isospin SU(4) symmetry. The GT operator, if we neglect the
neutrino potential, is invariant under SU(4) transformations,
implying that only states belonging to the same irreducible
representations (irreps) of SU(4) can be connected by the
operator; the matrix elements between states in different irreps
vanish. Furthermore, in the absence of spin-orbit splitting in
the HM piece, the collective Hamiltonian Hcoll is invariant
under SU(4) if the isovector and isoscalar pairing terms have
the same strength, gT =1 = gT =0. The situation resembles
that associated with the ββ decay Fermi operator, which
because of isospin symmetry has vanishing matrix elements
between states belonging to different isospin-SU(2) irreps, i.e.,
having different total isospin [39]. In 0νββ decay the neutrino
potential breaks the SU(2) invariance of the operator and the
matrix elements, MF

0ν , do not vanish, but they are nevertheless
suppressed [6,8,10,17].

In pf -shell nuclei the spin-orbit splitting is sizable, and
nuclear states are in general a combination of several different
SU(4) irreps [40]. However, since gT =0 is only slightly larger
than gT =1, and the spin-isospin interaction, which conserves
the SU(4) symmetry, effectively increases the energy separa-
tion among SU(4) irreps, the fraction of irreps shared between
the parent and daughter nuclei is small. This fact is illustrated in
the top part of Fig. 4, which shows the percentage of the ground
state in each Ti isotope (daughter nucleus) belonging in irreps
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shell. This Hamiltonian employs a monopole interaction and
collective pieces: isovector J = 0 and isoscalar J = 1 pairing
terms, a quadrupole-quadrupole term, and a spin-isospin
term. We compare the 0νββ decay matrix elements that this
interaction produces with those produced by the full shell
model interaction in the Ca, Ti, and Cr isotopic chains (heavier
elements are computationally more demanding, as well as
more sensitive to orbitals beyond the pf shell), and identify the
most relevant collective correlations for ββ decay. Second, we
use the collective interaction within a GCM calculation that
includes the isoscalar pairing amplitude and the quadrupole
moment as generator coordinates, and compare the resulting
0νββ decay matrix elements to those of the shell model.
Finally, we try to assess the degree to which our conclusions
hold for the heavier nuclei in which ββ decay could be detected
in next-generation experiments.

The rest of this paper is structured as follows. Section II
describes the extraction of the separable collective interaction
and discusses each of its components. Section III briefly
presents the 0νββ decay operator and compares the matrix
elements, calculated in the shell model with both the full and
collective Hamiltonians, for isotopes of Ca, Ti, and Cr. It also
shows GCM matrix elements for the same nuclei, calculated
with the same collective interaction, and finally discusses the
matrix elements for heavier nuclei that are of real interest for
0νββ decay experiments. Section IV is a conclusion.

II. SEPARABLE COLLECTIVE INTERACTION

We work in the pf -shell configuration space, comprising
the 0f7/2, 1p3/2, 1p1/2, and 0f5/2 orbitals. As a reference
Hamiltonian we use the shell model interaction KB3G [19],
which has been extensively tested throughout the pf shell.
This interaction provides a very good description of nu-
clear structure, including spectroscopy, electromagnetic and
Gamow-Teller transitions, and deformation [15]. Then, follow-
ing the work of Dufour and Zuker [18], we build the separable
collective Hamiltonian that best approximates KB3G. Roughly
speaking, Ref. [18] determines the structure of the lowest-lying
collective states in the particle-hole and pairing representations
with a given angular momentum J , isospin T , and parity π , and
then constructs a series of separable terms, with appropriate
strengths, that reproduce those states. Dufour and Zuker find
that the most important terms in the particle-hole channel are
the isoscalar quadrupole and spin-isospin (στστ ) interactions,
and in the pairing channel the isovector J π = 0+ and isoscalar
J π = 1+ interactions.

The separable collective Hamiltonian, Hcoll, that includes
the full monopole piece of the KB3G interaction and the
dominant collective terms found by Dufour and Zuker has
the form

Hcoll = HM + gT =1
1∑

n=−1

S†
nSn + gT =0

1∑

m=−1

P †
mPm

+ gph

1∑

m,n=−1

: F†
mnFmn : +χ

2∑

µ=−2

: Q†
µQµ : , (1)

TABLE I. Strengths (in MeV) of the isovector pairing (gT =1),
isoscalar paring (gT =0), spin-isospin (gph), and quadrupole (χ )
interactions in the separable collective Hamiltonian Hcoll [Eq. (1)].
The values are taken from Ref. [18] and scaled to nucleon number A =
42. For heavier isotopes the strengths are multiplied by (42/A)1/3.

gT =1 gT =0 gph χ

−0.377 −0.587 0.057 −0.141

where the colons indicate normal ordering. The monopole
Hamiltonian HM includes two-body terms and one-body
(single-particle) energies, both taken from KB3G. In addition

S†
n = 1√

2

∑

α

√
2lα + 1(a†

αa†
α)0,0,1

0,0,n,

P †
m = 1√

2

∑

α

√
2lα + 1(a†

αa†
α)0,1,0

0,m,0,

(2)
Fmn = 2

∑

α

√
2lα + 1(a†

α ãα)0,1,1
0,m,n,

Qµ = 1√
5

∑

α,β

⟨nαlα||r2Y2/b
2||nβ lβ⟩(a†

α ãβ)2,0,0
µ,0,0,

where Fmn, written in first quantization, is just
∑

i σm(i)τn(i),
b is the usual oscillator parameter, a†

α creates a nucleon in
a single-particle orbital with principal quantum number nα

and orbital angular momentum lα , and ãa destroys a nucleon
in the time-reversed orbital [more precisely, ãlα ,mα ,sα ,τα

≡
(−1)lα+1−mα−sα−ταalα ,−mα ,sα ,−τα

, where mα is the z component
of the orbital angular momentum, sα is the z component of the
spin, and τα is the z component of the isospin]. The superscripts
following the parentheses stand for the two-particle orbital
angular momentum, spin, and isospin, and the subscripts for
their z components. The strengths of the various terms, gT =1,
gT =0, gph, and χ , are taken from Ref. [18] and appear in Table I
for mass A = 42 (they scale with A−1/3). Note that the pairing
and quadrupole-quadrupole terms are attractive, as expected.
Reference [20] uses a similar collective Hamiltonian, also
based on the decomposition in Ref. [18], but without the
spin-isospin term, to study the competition between isovector
and isoscalar pairing in pf -shell nuclei.

The significance of the various terms in Hcoll is as follows:
The monopole Hamiltonian HM adds effective neutron- and
proton-number-dependent effective single-particle energies
to the bare energies. The remaining terms are collective—
an isovector spin-0 pairing interaction, an isoscalar spin-1
pairing interaction, a quadrupole-quadrupole interaction, and
a Landau-Migdal-style spin-isospin interaction. Many studies
of nuclear collectivity (e.g., [21–23]) include only isovec-
tor pairing (usually without the proton-neutron part) and
quadrupole-quadrupole terms. And isoscalar pairing is fre-
quently downplayed. Among the models studying 0νββ decay
matrix elements, the EDF-based GCM and the IBM have not
yet included isoscalar pairing explicitly.

According to Ref. [18], the terms included in Hcoll are
the most important for pf -shell nuclei (we could also have
included, for example, an isovector quadrupole-quadrupole
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FIG. 4. Top panel: Percentage of ground state in daughter nuclei
(Ti isotopes) belonging to SU(4) irreducible representations (irreps)
that are also present in the corresponding parent nuclei (Ca isotopes),
as a function of the neutron number Nparent of the parent nucleus.
Results are shown for the KB3G effective interaction (black circles,
solid line), the collective Hamiltonian Hcoll (red circles, dashed line),
Hcoll without the isoscalar pairing term (blue circles, short-dashed
line), Hcoll without both the isoscalar pairing and the spin-isospin
terms (orange circles, dot-dashed line), and the KB3G interaction
diagonalized in a basis of a seniority-zero states (purple squares,
dotted line). Bottom panel: MGT

2ν (cl.) (see text) as a function of Nparent.
Correspondence between results and symbols/lines is the same as in
the top panel.

that are also present in the ground state of the corresponding
Ca isotope (parent). The small percentages mean that in the
approximation that the neutrino potential is replaced by a
constant, i.e., with the 0νββ decay operator replaced by the
closure version of the 2νββ decay operator MGT

2ν (cl.), the
matrix elements are tiny (see the bottom panel of Fig. 4).
The result explains why MGT for 0νββ decay, which reflects
mild SU(4) breaking by the neutrino potential, is generally
small rather than either tiny or large. The only exception is
in mirror nuclei, where the irreps in the parent and daughter
are identical. There the matrix elements are larger than others
in the same isotopic chain, as both shell-model and GCM
calculations show [6,16,17].

Little remains of SU(4) symmetry when the isoscalar
pairing and the spin-isospin terms are removed from the
Hamiltonian. As Fig. 4 shows, setting gT =0 = 0 causes the
percentage of the ground states in parent and daughter nuclei
belonging to shared SU(4) irreps to increase substantially,
which in turn increases MGT

2ν (cl.). The effect is even stronger
when the spin-isospin interaction is removed as well. And as
Figs. 2 and 3 show, the MGT

0ν matrix elements also increase
dramatically. (The percentage of common irreps in the parent
and and daughter nuclei actually decreases faster with N − Z
than the matrix elements. The reason is that the matrix elements
between states in the same irrep are proportional to N − Z
[41]).

FIG. 5. Two-neutrino ββ decay matrix elements MGT
2ν , for the

decay of Ca isotopes into Ti as a function of the neutron number Nparent

in the parent nucleus. Results are shown for the KB3G interaction
(black circles, solid line), the full collective interaction Hcoll (red
circles, dashed line), Hcoll with the isoscalar pairing term removed
(blue squares, short-dashed line), and Hcoll with both isoscalar-pairing
and spin-isospin parts removed (orange squares, dot-dashed line).

The same kind of SU(4) breaking is at play when ground
states are forced to have seniority zero, that is, states con-
sisting entirely of like-particle J = 0 pairs. By construction,
seniority-zero states have no proton-neutron pairs or spin-
isospin correlations and thus break SU(4) strongly. As a result,
the percentage of the ground states in the parent and daughter
nuclei belonging to shared irrep increases and both MGT

2ν (cl.)
and MGT

0ν grow (see Refs. [17,31]).
In addition, we study the impact of isoscalar pairing in

2νββ decay. The lower part of Fig. 4 suggests that spin-isospin
and isoscalar pairing correlations are relevant for 2νββ decay,
but for a detailed study the matrix elements need to be
calculated beyond the closure approximation, because of the
small momentum transfers involved in 2νββ transitions [2].

Figure 5 shows nonclosure 2νββ decay matrix elements
calculated with the shell-model KB3G interaction, the col-
lective Hamiltonian Hcoll, and with the same Hamiltonian
but excluding the isoscalar pairing and/or spin-isospin parts
in Hcoll. As in 0νββ decay, the results obtained with the
full collective Hamiltonian Hcoll are in very good agreement
with the full shell-model results, suggesting that the collective
Hamiltonian includes all the interaction components relevant
for 2νββ decay and that fine details of the shell-model
interaction only affect this decay moderately.

The impact of isoscalar pairing and spin-isospin corre-
lations is sizable and, like in 0νββ decay, excluding both
collective terms (or only the isoscalar pairing part) leads
to significantly overestimated 2νββ decay matrix elements.
Figure 5 also shows that for 2νββ decay, excluding only the
spin-isospin interaction leads to overestimated matrix elements
in neutron-rich nuclei as well (in 0νββ decay all matrix
elements vary just by about 10%). In general, the effect of
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shell. This Hamiltonian employs a monopole interaction and
collective pieces: isovector J = 0 and isoscalar J = 1 pairing
terms, a quadrupole-quadrupole term, and a spin-isospin
term. We compare the 0νββ decay matrix elements that this
interaction produces with those produced by the full shell
model interaction in the Ca, Ti, and Cr isotopic chains (heavier
elements are computationally more demanding, as well as
more sensitive to orbitals beyond the pf shell), and identify the
most relevant collective correlations for ββ decay. Second, we
use the collective interaction within a GCM calculation that
includes the isoscalar pairing amplitude and the quadrupole
moment as generator coordinates, and compare the resulting
0νββ decay matrix elements to those of the shell model.
Finally, we try to assess the degree to which our conclusions
hold for the heavier nuclei in which ββ decay could be detected
in next-generation experiments.

The rest of this paper is structured as follows. Section II
describes the extraction of the separable collective interaction
and discusses each of its components. Section III briefly
presents the 0νββ decay operator and compares the matrix
elements, calculated in the shell model with both the full and
collective Hamiltonians, for isotopes of Ca, Ti, and Cr. It also
shows GCM matrix elements for the same nuclei, calculated
with the same collective interaction, and finally discusses the
matrix elements for heavier nuclei that are of real interest for
0νββ decay experiments. Section IV is a conclusion.

II. SEPARABLE COLLECTIVE INTERACTION

We work in the pf -shell configuration space, comprising
the 0f7/2, 1p3/2, 1p1/2, and 0f5/2 orbitals. As a reference
Hamiltonian we use the shell model interaction KB3G [19],
which has been extensively tested throughout the pf shell.
This interaction provides a very good description of nu-
clear structure, including spectroscopy, electromagnetic and
Gamow-Teller transitions, and deformation [15]. Then, follow-
ing the work of Dufour and Zuker [18], we build the separable
collective Hamiltonian that best approximates KB3G. Roughly
speaking, Ref. [18] determines the structure of the lowest-lying
collective states in the particle-hole and pairing representations
with a given angular momentum J , isospin T , and parity π , and
then constructs a series of separable terms, with appropriate
strengths, that reproduce those states. Dufour and Zuker find
that the most important terms in the particle-hole channel are
the isoscalar quadrupole and spin-isospin (στστ ) interactions,
and in the pairing channel the isovector J π = 0+ and isoscalar
J π = 1+ interactions.

The separable collective Hamiltonian, Hcoll, that includes
the full monopole piece of the KB3G interaction and the
dominant collective terms found by Dufour and Zuker has
the form

Hcoll = HM + gT =1
1∑

n=−1

S†
nSn + gT =0

1∑

m=−1

P †
mPm

+ gph

1∑

m,n=−1

: F†
mnFmn : +χ

2∑

µ=−2

: Q†
µQµ : , (1)

TABLE I. Strengths (in MeV) of the isovector pairing (gT =1),
isoscalar paring (gT =0), spin-isospin (gph), and quadrupole (χ )
interactions in the separable collective Hamiltonian Hcoll [Eq. (1)].
The values are taken from Ref. [18] and scaled to nucleon number A =
42. For heavier isotopes the strengths are multiplied by (42/A)1/3.

gT =1 gT =0 gph χ

−0.377 −0.587 0.057 −0.141

where the colons indicate normal ordering. The monopole
Hamiltonian HM includes two-body terms and one-body
(single-particle) energies, both taken from KB3G. In addition

S†
n = 1√

2

∑

α

√
2lα + 1(a†

αa†
α)0,0,1

0,0,n,

P †
m = 1√

2

∑

α

√
2lα + 1(a†

αa†
α)0,1,0

0,m,0,

(2)
Fmn = 2

∑

α

√
2lα + 1(a†

α ãα)0,1,1
0,m,n,

Qµ = 1√
5

∑

α,β

⟨nαlα||r2Y2/b
2||nβ lβ⟩(a†

α ãβ)2,0,0
µ,0,0,

where Fmn, written in first quantization, is just
∑

i σm(i)τn(i),
b is the usual oscillator parameter, a†

α creates a nucleon in
a single-particle orbital with principal quantum number nα

and orbital angular momentum lα , and ãa destroys a nucleon
in the time-reversed orbital [more precisely, ãlα ,mα ,sα ,τα

≡
(−1)lα+1−mα−sα−ταalα ,−mα ,sα ,−τα

, where mα is the z component
of the orbital angular momentum, sα is the z component of the
spin, and τα is the z component of the isospin]. The superscripts
following the parentheses stand for the two-particle orbital
angular momentum, spin, and isospin, and the subscripts for
their z components. The strengths of the various terms, gT =1,
gT =0, gph, and χ , are taken from Ref. [18] and appear in Table I
for mass A = 42 (they scale with A−1/3). Note that the pairing
and quadrupole-quadrupole terms are attractive, as expected.
Reference [20] uses a similar collective Hamiltonian, also
based on the decomposition in Ref. [18], but without the
spin-isospin term, to study the competition between isovector
and isoscalar pairing in pf -shell nuclei.

The significance of the various terms in Hcoll is as follows:
The monopole Hamiltonian HM adds effective neutron- and
proton-number-dependent effective single-particle energies
to the bare energies. The remaining terms are collective—
an isovector spin-0 pairing interaction, an isoscalar spin-1
pairing interaction, a quadrupole-quadrupole interaction, and
a Landau-Migdal-style spin-isospin interaction. Many studies
of nuclear collectivity (e.g., [21–23]) include only isovec-
tor pairing (usually without the proton-neutron part) and
quadrupole-quadrupole terms. And isoscalar pairing is fre-
quently downplayed. Among the models studying 0νββ decay
matrix elements, the EDF-based GCM and the IBM have not
yet included isoscalar pairing explicitly.

According to Ref. [18], the terms included in Hcoll are
the most important for pf -shell nuclei (we could also have
included, for example, an isovector quadrupole-quadrupole
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excluding both isoscalar pairing and spin-isospin terms is
larger than the sum of the matrix element increases resulting
from not including each term individually. Overall the impact
of the isoscalar pairing and spin-isospin terms are qualitatively
similar but quantitatively different in the neutrinoless and
two-neutrino ββ decay modes.

B. 0νββ decay of p f -shell nuclei in the GCM

The strength of the GCM, QRPA (based on EDF), and IBM
(based on bosons) is their treatment of collectivity. Although
these methods sacrifice some of the complex valence-space
correlations captured by the shell model, they can effectively
include larger single-particle spaces, which are frequently
required to capture collective correlations. Here we test the
ability of the GCM, with the same collective interaction
discussed in Sec. II, Hcoll, to reproduce shell-model MGT

0ν

matrix elements.
The GCM is an extension of mean-field theory that

supplements the lowest-energy quasiparticle vacuum with
other quasiparticle vacua that are constrained to have different
expectation values for the operators representing collective
coordinates. The method is used most commonly to allow
vacua with a range of values for the axial quadrupole
moment ⟨Q0⟩ to appear in low-lying collective states; in such
applications the quantum states are obtained by diagonalizing
the Hamiltonian in the space of nonorthogonal vacua with
different quadrupole moments, or equivalently, different values
of the deformation parameter β.

The generator coordinates, the collective degrees of free-
dom in the GCM, are chosen at the beginning of the
calculation, and it is crucial to include all collective degrees of
freedom that are important for the phenomena being studied.
Nonaxial quadrupole coordinates are ostensibly important but
because they affect ground states less than excited states (and
because they make angular-momentum projection quite time
consuming), we restrict ourselves to axially deformed shapes.
And we neglect like-particle pairing fluctuations because they
change MGT

0ν by 30% or less in the pf shell [12]. Isoscalar
pairing is another story, however. Beginning with the QRPA
work of Ref. [38], it has been apparent that dynamical isoscalar
pairing correlations have a significant effect on MGT

0ν (the static
correlations vanish). Reference [14] showed how to add their
effects by using ⟨P0 + P

†
0 ⟩ as a generator coordinate. This

isoscalar pairing amplitude breaks the particle number and
rotational symmetries but preserves axial symmetry, so we
project the HFB states onto states with good particle number
and angular momentum to restore the broken symmetries. The
other components of the isoscalar pairing amplitude (related to
P

†
±1) are included through the angular-momentum projection.

Isospin symmetry is broken and not restored in our calculation.
Figure 6 shows our GCM results for the 0νββ decay of Ti

and Cr isotopes with the interaction Hcoll. We compare them
to the shell-model values obtained from the diagonalization
of Hcoll. Both the “1d” version of the GCM, which treats
only the isoscalar pairing amplitude as a coordinate, and
the “2d” version, which adds a coordinate corresponding
to axial deformation, agree well with the full shell-model
results with Hcoll. (The two GCMs agree with each other

FIG. 6. Gamow-Teller part of 0νββ decay matrix elements, MGT
0ν ,

for the decay of Ti isotopes into Cr (top panel) and Cr isotopes into
Fe (bottom panel), as a function of the neutron number Nparent in
the parent nucleus. Results are shown for the shell model with the
collective Hamiltonian Hcoll (red, dashed line), the GCM with the
same Hcoll but without quadrupole-quadrupole interaction, and with
the isoscalar pairing amplitude as only coordinate (blue, short-dashed
line), and the GCM with the quadrupole-quadrupole interaction
and with the axial quadrupole deformation parameter β as second
coordinate (purple, dotted line).

because the addition of the quadrupole interaction, as we
have already seen, does not have a large effect on the matrix
elements.) Together with the demonstrated adequacy of Hcoll,
the agreement suggests that theories of collective motion,
which can be extended to several shells, can provide reliable
matrix elements in heavier nuclei, where a single valence shell
may not be sufficient.

In the isotopes with neutron numbers in the range N = 28 −
32 the GCM results deviate from those of the shell-model. For
these transitions either the parent or daughter nucleus contains
a closed shell at N = 28 or N = 32, and collectivity plays
a smaller role. In addition, at present our GCM calculation
excludes vacua without pairing to avoid numerical instability,
so that we omit the most important states in closed-shell
systems. The inclusion of individual particle-hole excitations
across shells in the GCM basis will improve the present results.

C. 0νββ decay in important nuclei near A = 80 and A = 130

The results presented so far illustrate the importance of
collective correlations for the 0νββ decay matrix elements of
nuclei in the lower part of the pf shell. Of all these isotopes,
however, only 48Ca actually has even a chance to be used in
a ββ experiment. All other relevant nuclei are too heavy for
shell-model calculations in complete oscillator shells, so that
an analysis like that in Sec. III A is not possible. Nevertheless,
we try to estimate the importance of isoscalar pairing for the
ββ decay of these isotopes.
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- SM/GCM comparison with the same 
interaction.


- 1D: only pn strength as a generator 
coordinate.


- 2D: pn strength and axial quadrupole 
deformation as generator coordinates.


EXACT vs. VARIATIONAL!!
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๏ NMEs differ a factor of three between the different methods but 
we need to understand which are the pros/cons of each method 
to provide reliable numbers (precision vs. accuracy). 

๏ Nuclear physics aspects like deformation, pairing, shell effects, 
etc., are understood similarly within different approaches.  

๏ Systematic comparisons between ISM/EDF methods have been 
performed but… we need more! 

Summary
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๏ Isospin mixing and restoration have to be done in the future. Why 
is it so difficult (perhaps impossible) with the current Gogny 
EDFs? 

๏ Triaxiality has to be taken into account in A=76 and A=100 decays 
(at least). 

๏ How relevant is the proper description of the spectra in 0νββ 
NMEs? 

๏ Occupation numbers with EDF to define physically sound 
valence spaces. 

๏ Odd-odd nuclei is still a major challenge for GCM calculations. 

๏ Computational time?!?

Open questions


