Neutrinoless double-beta decay operator from chiral EFT

Achim Schwenk

TRIUMF Double Beta-Decay Workshop May 12, 2016

Bundesministerium für Bildung und Forschung

Outline

Advances in nuclear forces and nuclear structure

Theoretical uncertainties from chiral EFT

An issue fitting low-energy couplings to ³H beta decay

 $0\nu\beta\beta$ operator from chiral EFT

Chiral effective field theory for nuclear forces

Weinberg, van Kolck, Kaplan, Savage, Wise, Bernard, Epelbaum, Kaiser, Machleidt, Meissner,...

Weinberg, van Kolck, Kaplan, Savage, Wise, Bernard, Epelbaum, Kaiser, Machleidt, Meissner,...

Nuclei bound by strong interactions

doi:10.1038/nature11188

The limits of the nuclear landscape

Jochen Erler^{1,2}, Noah Birge¹, Markus Kortelainen^{1,2,3}, Witold Nazarewicz^{1,2,4}, Erik Olsen^{1,2}, Alexander M. Perhac¹ & Mario Stoitsov^{1,2},

How does the nuclear chart emerge from chiral EFT?

Ab initio calculations of neutron-rich oxygen isotopes

impact of **3N** forces key for neutron dripline Otsuka et al., PRL (2010)

based on same SRG-evolved -130 NN+3N interactions -140 (MeV -150 Energy -160 **MR-IM-SRG** -170 IT-NCSM **SCGF** AME 2012 CC -180 18 20 28 16 22 24 26 Mass Number A

using different many-body methods:

Coupled Cluster theory/CCEI Hagen et al., PRL (2012), Jansen et al., PRL (2014) Multi-Reference In-Medium SRG and IT-NCSM Hergert et al., PRL (2013) Self-Consistent Green's Function methods Cipollone et al., PRL (2013)

Resolution of radius problems

good saturation properties essential for radii N²LOsat potential fit to nuclei up to A=24 Ekström et al., PRC (2015)

Nuclear forces and nuclear matter

chiral 3N forces fit to light nuclei predict nuclear matter saturation with theoretical uncertainties Hebeler et al., PRC (2011), Bogner et al., NPA (2005)

Nuclear forces and nuclear matter

first results for asymmetric matter with improved treatment of 3N forces Drischler, Hebeler, AS, PRC (2016) see also Holt, Kaiser, Weise, Wellenhofer

Resolution of radius problems

good saturation properties essential for radii N²LOsat potential fit to nuclei up to A=24 Ekström et al., PRC (2015)

NN+3N interactions that predict nuclear matter saturation Hebeler et al., PRC (2011) only fit to light nuclei, but nonlocal 3N regulators

lead to radii consistent with experiment for ⁴⁸Ca Hagen et al., Nature Phys. (2015) predict small neutron skin, dipole polarizability, and weak formfactor

Towards theoretical uncertainties Simonis et al., PRC (2016) based on NN+3N interactions (sd shell) that predict nuclear matter saturation within uncertainties

Theoretical uncertainties dominated by uncertainties in nuclear forces!

Frontier of ab initio calculations at A~50

Masses of exotic calcium isotopes pin down nuclear forces

F. Wienholtz¹, D. Beck², K. Blaum³, Ch. Borgmann³, M. Breitenfeldt⁴, R. B. Cakirli^{3,5}, S. George¹, F. Herfurth², J. D. Holt^{6,7}, M. Kowalska⁸, S. Kreim^{3,8}, D. Lunney⁹, V. Manea⁹, J. Menéndez^{6,7}, D. Neidherr², M. Rosenbusch¹, L. Schweikhard¹, A. Schwenk^{7,6}, J. Simonis^{6,7}, J. Stanja¹⁰, R. N. Wolf¹ & K. Zuber¹⁰

^{53,54}Ca masses measured at ISOLTRAP/CERN using new MR-TOF mass spectrometer

excellent agreement with theoretical NN+3N prediction

suggests N=32 shell closure

Unexpectedly large charge radii of neutron-rich calcium isotopes

R. F. Garcia Ruiz^{1*}, M. L. Bissell^{1,2}, K. Blaum³, A. Ekström^{4,5}, N. Frömmgen⁶, G. Hagen⁴, M. Hammen⁶, K. Hebeler^{7,8}, J. D. Holt⁹, G. R. Jansen^{4,5}, M. Kowalska¹⁰, K. Kreim³, W. Nazarewicz^{4,11,12}, R. Neugart^{3,6}, G. Neyens¹, W. Nörtershäuser^{6,7}, T. Papenbrock^{4,5}, J. Papuga¹, A. Schwenk^{3,7,8}, J. Simonis^{7,8}, K. A. Wendt^{4,5} and D. T. Yordanov^{3,13}

Park et al., Gazit, Epelbaum, Klos, Chiral EFT for weak currents in nuclei Kölling, Pastore, Piarulli, ... NN **3**N 4None-body currents at Q^0 and Q^2 one-body currents LO $\mathcal{O}\left(\frac{Q^0}{\Lambda^0}\right)$ similar to pheno. currents NLO $\mathcal{O}\left(\frac{Q^2}{\Lambda^2}\right)$ + two-body currents at Q³ $\rm N^2LO~{\cal O}$ π N³LO $\mathcal{O}\left(\frac{Q^4}{\Lambda^4}\right)$ N

+ •••

same couplings in forces and currents!

Chiral EFT for electromagnetic currents

predicts consistent electromagnetic 1+2-body currents

GFMC calculations of magnetic moments in light nuclei Pastore et al. (2012) 2-body currents (meson-exchange currents=MEC) are key!

Axial-vector currents and 3N forces

 C_3, C_4

weak axial-vector currents couple to spin, similar to pions

two-body currents predicted by NN, 3N couplings to N²LO Park et al., Gardestig and Phillips,...

two-body analogue of Goldberger-Treiman relation

used in a pioneering study to determine c_D Gazit, Quaglioni, Navratil, PRL (2009)

very attractive because: ³H half-life precisely known, uncorrelated with ³H energy c_D , c_E fully determined from A=3

 \longrightarrow

 c_1, c_3, c_4

Axial-vector currents and 3N forces Klos et al., in prep.

However: ³H beta decay fit only performed for fixed cutoff in currents Consider different cutoffs!

Axial-vector currents and 3N forces Klos et al., in prep.

Cutoff dependence in two-body currents can be significant/larger than two-body-current contribution

Axial-vector currents and 3N forces Klos et al., in prep.

Cutoff dependence in two-body currents can be significant/larger than two-body-current contribution

EFT uncertainties are important for electroweak operators

Neutrinoless double-beta decay

different NME calculations result in large spread

GERDA Collaboration (2013)

Can we understand the differences in nuclear structure?

None of the calculations use consistent operators. Contributions from two-body currents?

An example from WIMP-nucleus scattering

shell model calculation based on the same interactions as for $0\nu\beta\beta$ very good agreement for spectra, ordering and grouping well reproduced

Park et al., Gazit, Epelbaum, Klos, Chiral EFT for weak currents in nuclei Kölling, Pastore, Piarulli, ... NN 3N 4None-body currents at Q⁰ and Q² one-body currents LO $\mathcal{O}\left(\frac{Q^0}{\Lambda^0}\right)$ similar to pheno. currents NLO $\mathcal{O}\left(\frac{Q^2}{\Lambda^2}\right)$ + two-body currents at Q³ N²LO $\mathcal{O}\left(\frac{Q^3}{\Lambda^3}\right)$ π N³LO $\mathcal{O}\left(\frac{Q^4}{\Lambda^4}\right)$ N ci from πN and NN Meissner, LAT 2005 $c_1 = -0.9^{+0.2}_{-0.5}, c_3 = -4.7^{+1.2}_{-1.0}, c_4 = 3.5^{+0.5}_{-0.2}$

Electroweak interactions and 3N forces

 c_1, c_3, c_4 c_{3}, c_{4} c_D c_D 1.1 3N couplings predict quenching of g_A 1bc needed in beta decay calculations $3T(g_A+2b)/g_A$ Menendez, Gazit, AS (2011) 0.9 2bc comparable to empirical $q \sim 0.75$ 0.7 for β , $2\nu\beta\beta$ decays D=(0.5 0.04 0.08 0.12 0

 ρ [fm⁻³]

Electroweak interactions and 3N forces

3N couplings predict quenching of g_A needed in beta decay calculations Menendez, Gazit, AS (2011)

 c_3, c_4

Сп

comparable to empirical $q \sim 0.75$ for β , $2\nu\beta\beta$ decays

predicts momentum dependence, weaker quenching for larger p Menendez, Gazit, AS (2011)

less quenching for $0\nu\beta\beta$ for $p \sim m_{\pi}$ $M^{0
uetaeta} \propto g_A^2 \Rightarrow \left(T_{1/2}^{0
uetaeta}
ight)^{-1} \propto g_A^4$

Chiral EFT and $0\nu\beta\beta$ decay

NMEs for $0\nu\beta\beta$ decay based on chiral EFT operator Menendez, Gazit, AS (2011)

modest quenching because $0\nu\beta\beta$ decay probes higher momentum transfer

two-body currents reduce NME by $\sim 15\%$ - 40%, need to be included in all calculations of $0\nu\beta\beta$ decay

Chiral EFT and $0\nu\beta\beta$ decay

NMEs for $0\nu\beta\beta$ decay based on chiral EFT operator

modest quenching because $0\nu\beta\beta$ decay probes higher momentum transfer

two-body currents reduce NME by $\sim 15\%$ - 40%, need to be included in all calculations of $0\nu\beta\beta$ decay

Summary

chiral effective field theory

nuclear forces and electroweak interactions, systematic for energies below ~300 MeV

theo. uncertainties dominated by uncert. in nuclear forces need to explore reg. scheme and long-range physics (e.g., c_i's)

calculation of $0\nu\beta\beta$ operator in chiral EFT less quenching compared to β , $2\nu\beta\beta$ decays

important to explore uncertainties in new calculations of NMEs