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• To provide useful numbers for low-energy nuclear physics: 
- Double beta decay processes
- interaction of neutrinos with nucleonic matter                                                        

From First Principles

 Aim:
1) Develop a strong predictive theory in the framework of light nuclei 
    where one can test nuclear theory ingredients 
2) Then extend it towards heavier systems and/or to observables where
    experiments are hard

• To provide interpretations for particle physics experiments:

- neutrino-interactions with nuclei

• Describe the nucleus as a system of interacting protons and neutrons and solve the 
  (non-relativistic) many-body problem without approximations or only with controllable
  approximations.

Low-
energy

Higher-energy
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High precision two-nucleon potentials:
well constraint on NN phase shifts 

Three nucleon forces: 
less known, constraint on A>2 observables
 

H = T + VNN + V3N + ...

 Traditional Nuclear Physics

          AV18+UIX, ..., J2

 Effective Field Theory
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Review Paper:
Electromagnetic Reactions on Light Nuclei
S. Bacca and S. Pastore  
J. Phys. G: Nucl. Part. Phys. 41 123002 (2014).

Ab-initio Theory Tools
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The Continuum Problem
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��� ⇥0

⇤���
2
�(Ef � E0 � ⇤)

= ��̃|�̃⇥
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You can use any good bound state method!    e.g. Hyperspherical Harmonics, 
                                                                                                 No Core Shell Model, 
                                                                                                 Coupled Cluster Theory

• Due to imaginary part        the solution          is unique

• Since the r.h.s. is finite, then        has bound state asymptotic behaviour
� |�̃�

|�̃�

L(�,�) R(!)
inversion

with the exact final state interaction

Efros et al., Nucl.Part.Phys.  34 (2007) R459 

Lorentz Integral Transform

Ĵµ

Ĵµ

Friday, 13 May, 16



Sonia Bacca

Develop new many-body methods that can extend the frontiers to heavier and neutron nuclei

 Coupled Cluster Theory • CC is optimal for closed shell nuclei (  1,   2)± ±

Medium-mass nuclei

T1 T2 T3

CCSD

CCSDT
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�
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reference SD with 
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CC future aims

CC theory now 
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 48Ca from first principles
Hagen et al., Nature Physics 12, 186-190 (2016)
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Density Functional Theory

Ab initio with three nucleon forces from chiral EFT

Friday, 13 May, 16



Sonia Bacca
8

 New theoretical method aimed at extending ab-initio calculations towards medium-mass 

z = E0 + � + i�with

LIT with Coupled Cluster Theory

 S.B. et al., PRL 111, 122502 (2013) 
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Present implementation in the CCSD scheme T = T1 + T2

R̂ = R̂0 + R̂1 + R̂2
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 New theoretical method aimed at extending ab-initio calculations towards medium mass 
LIT with Coupled Cluster Theory

Validation for 4He 
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The comparison with exact theory is very good!
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Extension to heavier nuclei
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 PRC 90, 064619 (2014) 

 With Mirko Miorelli, PhD student at UBC 

NN (N3LO)
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Neutrino-nucleus cross section 
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Ultimate goal: addressing inclusive neutrino -16O interactions for T2K

Neutrino long baseline experiments (T2K, Miniboon, LBNE, etc.) require theoretical 
input to simulate the interaction of neutrinos with the detector material (12C, 16O, 40Ar, ...)

So far very simple models (RMF) are used and ab-initio calculations with reliable 
error estimates are sought for

Neutrino scattering ⬄ electron scattering

probe                      [MeV]

• Quasi Elastic part can be  
   studied with the LIT method
   and coupled-cluster theory

• Need to test theory on
  electron scattering data first
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A
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with                                      and    scattering angle 
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Inclusive cross section A(e,e’)X 
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Inelastic e-Scattering A(e,e’)X     
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Inelastic e-Scattering A(e,e’)X     
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  Calculation of               with the  LIT  and hyperspherical harmonics       
  Medium-q kinematics   

RL(�,q)

PWIA Full FSI:AV18+UIX:

S.B. et al., PRL 102, 162501 (2009)

 Strong effect of FSI which can be accounted rigorously with the LIT
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4He(e,e’)X     Inelastic e-Scattering

 New project: compare ab-initio methods to account for FSI with spectral function approach   
(with Noemi Rocco)
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Coulomb Sum Rule with CC
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Total inelastic strength

Expand charge operator in multipoles and calculate it for different q

 With Tianrui Xu, B.Sci at UBC

We will use a two-body force derived from chiral EFT (Entem and Machleidt N3LO)
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Coulomb Sum Rule in 4He
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Convergence in terms of multipoles
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Coulomb Sum Rule in 4He
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Convergence in terms of multipoles
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Coulomb Sum Rule in 16O

18

Next address transverse and weak response in 16O with 
two-body currents

16O

Preliminary
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Two-body Currents
See talks by S.Pastore, A.Schwenk
 Two-body currents (or MEC) play a crucial role in double beta decay and lepton-scattering 
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Example of the Transverse sum rule
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Two-body Currents
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At NLO you get about 70% of the
total effect of 2-body currents 

Adapted from L. Girlanda, et al. 
EPJ Web of Conferences 3, 01004 (2010) 
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Seagull Pion-in-Flight

NLO current

one pion exchange diagrams

 With Oscar Javier Hernandez, PhD student at UBC 
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Two-body Currents

 With Oscar Javier Hernandez, PhD student at UBC 

• Performed the multipole expansion of the NLO current at finite q         need for neutrino scattering 

• Check the low-momentum case of magnetic dipole for the deuterium susceptibility 
 

�M =
2

3

Z
d!

RM (!)

!

Deuteron Potential Current Susceptibility [fm3]
Our work AV18 LO 0.0678

Friar* AV18 LO 0.0678
Our work AV18 NLO 0.0756
Our work AV18 NLO+∆ 0.0776

Friar* AV18 NLO+∆ 0.0774

*J. Friar and G.L. Payne, Phys. Rev. C 56 619 (1997)

↵
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Two-body Currents

 With Oscar Javier Hernandez, PhD student at UBC 

• Performed the multipole expansion of the NLO current at finite q         need for neutrino scattering 

• Check the low-momentum case of magnetic dipole for the deuterium susceptibility 
 

�M =
2

3

Z
d!

RM (!)

!

Deuteron Potential Current Susceptibility [fm3]
Our work AV18 LO 0.0678

Friar* AV18 LO 0.0678
Our work AV18 NLO 0.0756
Our work AV18 NLO+∆ 0.0776

Friar* AV18 NLO+∆ 0.0774

*J. Friar and G.L. Payne, Phys. Rev. C 56 619 (1997)

11% enhancement}} 14% enhancement

• To do: apply to heavier nuclei using coupled-cluster theory 
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Magnetic Sum Rule
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SM =

Z
d! RM (!)

Validation for 4He 
Comparison of coupled cluster with exact hyperspherical harmonics (EIHH) with NN forces at N3LO 

Method in µN2 CCSD+(T)
EIHH 1.69 1.74
CCSD 1.62

CCSD+(T) 1.74

1-body operator Preliminary
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LIT  w.f. 
from CC Jµ+ +

Outlook

• Possibly some of the technology developed for this program can be useful to
    double-beta decay program: 
➡ Gamow-Teller strength functions
➡ Role of subnuclear degrees of freedom in quenching factors

Thank you for your attention!
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