

Canada's National Laboratory for Particle and Nuclear Physics Laboratoire national canadien pour la recherche en physique nucléaire et en physique des particules

A path to lepton-nucleus reactions from first principles

Sonia Bacca | Theory Department | TRIUMF

In collaboration with: Nir Barnea, Gaute Hagen, Oscar, Javie

Nir Barnea, Gaute Hagen, Oscar Javier Hernandez, Mirko Miorelli, Giuseppina Orlandini, Thomas Papenbrock, Tianrui Xu, et al.

TRIUMF Double Beta Decay Workshop, May 11-13, 2016

Owned and operated as a joint venture by a consortium of Canadian universities via a contribution through the National Research Council Canada Propriété d'un consortium d'universités canadiennes, géré en co-entreprise à partir d'une contribution administrée par le Conseil national de recherches Canada

Nuclear Chart

From First Principles

 Describe the nucleus as a system of interacting protons and neutrons and solve the (non-relativistic) many-body problem without approximations or only with controllable approximations.

Aim:

- Develop a strong predictive theory in the framework of light nuclei where one can test nuclear theory ingredients
- 2) Then extend it towards heavier systems and/or to observables where experiments are hard
- To provide useful numbers for low-energy nuclear physics:
- Double beta decay processes
- interaction of neutrinos with nucleonic matter

Higher-energy

Lowenergy

- To provide interpretations for particle physics experiments:
- neutrino-interactions with nuclei

Sonia Bacca

Friday, 13 May, 16

RTRIUMF

Ab-initio Theory Tools

The Continuum Problem

$$\sigma \propto R(q,\omega) \qquad R(q,\omega) = \oint_{f} \left| \left\langle \psi_{f} | \hat{J}_{\mu}(q) | \psi_{0} \right\rangle \right|^{2} \delta(E_{f} - E_{0} - \omega)$$

Lorentz Integral Transform

Efros et al., Nucl.Part.Phys. 34 (2007) R459

RIUMF

Response in the continuum
$$R(\omega) = \oint_{f} \left| \left\langle \psi_{f} \left| \hat{J}_{\mu} \right| \psi_{0} \right\rangle \right|^{2} \delta(E_{f} - E_{0} - \omega)$$

$$L(\sigma,\Gamma) = \int d\omega \frac{R(\omega)}{(\omega-\sigma)^2 + \Gamma^2} = \langle \tilde{\psi} | \tilde{\psi} \rangle$$

$$(H - E_0 - \boldsymbol{\sigma} + i\boldsymbol{\Gamma}) \mid \tilde{\psi} \rangle = \hat{J}_{\mu} \mid \psi_0 \rangle$$

- Due to imaginary part Γ the solution $| \tilde{\psi}
 angle$ is unique
- \bullet Since the r.h.s. is finite, then $|\psi\rangle$ has bound state asymptotic behaviour

You can use any good bound state method! e.g. Hyperspherical Harmonics, No Core Shell Model, Coupled Cluster Theory
$$L(\sigma,\Gamma) \xrightarrow{\text{inversion}} R(\omega)$$
 with the exact final state interaction

Medium-mass nuclei

Develop new many-body methods that can extend the frontiers to heavier and neutron nuclei

• CC is optimal for closed shell nuclei $(\pm 1, \pm 2)$ Uses particle coordinates $|\psi_0(\vec{r_1}, \vec{r_2}, ..., \vec{r_A})\rangle = e^T |\phi_0(\vec{r_1}, \vec{r_2}, ..., \vec{r_A})\rangle$ reference SD with any sp states $T = \sum T_{(A)}$ cluster expansion $T_1 = \sum_{ia} t_i^a a_a^\dagger a_i$ $T_2 = \frac{1}{4} \sum_{ij,ab} t_{ij}^{ab} a_a^\dagger a_b^\dagger a_j a_i$ T_1 T_2 T_3 a.b... i,j,... CCSD CCSDT

⁴⁸Ca from first principles

- Ab initio with three nucleon forces from chiral EFT
- Density Functional Theory

RIUMF

LIT with Coupled Cluster Theory

New theoretical method aimed at extending *ab-initio* calculations towards medium-mass

S.B. et al., PRL 111, 122502 (2013)

$$\begin{split} (H - z^*) |\tilde{\Psi}\rangle &= J^{\mu} |\psi_0\rangle \\ \text{with } z = E_0 + \sigma + i\Gamma \\ \bar{H} = e^{-T} H e^T \\ \bar{\Theta} = e^{-T} \Theta e^T \\ L(\sigma, \Gamma) &= \left\langle \tilde{\Psi} | \tilde{\Psi} \right\rangle \\ & \bullet \\ L(\sigma, \Gamma) &= \left\langle \tilde{\Psi}_L | \tilde{\Psi}_R \right\rangle = \\ & -\frac{1}{2\pi} \Im \left\{ \langle \bar{0}_L | \bar{\Theta}^{\dagger} \left[| \tilde{\Psi}_R(z^*) \rangle - | \tilde{\Psi}_R(z) \right] \\ \text{with } | \tilde{\Psi}_R(z^*) \rangle &= \hat{R}(z^*) | \Phi_0 \rangle \end{split}$$

Formulation based on the solution of an

Equation of Motion with source

No approximations done so far!

Present implementation in the CCSD scheme

$$T = T_1 + T_2$$

$$\hat{R} = \hat{R}_0 + \hat{R}_1 + \hat{R}_2$$

LIT with Coupled Cluster Theory

New theoretical method aimed at extending *ab-initio* calculations towards medium mass

Validation for ⁴He

Comparison of CCSD with exact hyperspherical harmonics (EIHH) with NN forces at N³LO

Extension to heavier nuclei

With Mirko Miorelli, PhD student at UBC

PRC 90, 064619 (2014)

Neutrino-nucleus cross section

Neutrino long baseline experiments (T2K, Miniboon, LBNE, etc.) require theoretical input to simulate the interaction of neutrinos with the detector material (¹²C, ¹⁶O, ⁴⁰Ar, ...)

So far very simple models (RMF) are used and ab-initio calculations with reliable error estimates are sought for

 Quasi Elastic part can be studied with the LIT method and coupled-cluster theory

 Need to test theory on electron scattering data first

Neutrino scattering

electron scattering

Ultimate goal: addressing inclusive neutrino -¹⁶O interactions for T2K

RIVMF Inelastic e-Scattering A(e,e')X

Virtual Photon

 (ω, \mathbf{q})

can vary independently

Inclusive cross section A(e,e')X

$$\frac{d^2\sigma}{d\Omega d\omega} = \sigma_M \left[\frac{Q^4}{\mathbf{q}^4} R_L(\omega, \mathbf{q}) + \left(\frac{Q^2}{2\mathbf{q}^2} + \tan^2 \frac{\theta}{2} \right) R_T(\omega, \mathbf{q}) \right]$$

with $Q^2 = -q_{\mu}^2 = \mathbf{q}^2 - \omega^2$ and θ scattering angle

and σ_M Mott cross section

RIVMF Inelastic e-Scattering A(e,e')X

Virtual Photon

 (ω, \mathbf{q})

can vary independently

Inclusive cross section A(e,e')X

$$\frac{d^2\sigma}{d\Omega d\omega} = \sigma_M \left[\frac{Q^4}{\mathbf{q}^4} R_L(\omega, \mathbf{q}) + \left(\frac{Q^2}{2\mathbf{q}^2} + \tan^2 \frac{\theta}{2} \right) R_T(\omega, \mathbf{q}) \right]$$
$$\frac{R_L(\omega, \mathbf{q})}{R_L(\omega, \mathbf{q})} = \sum_f |\langle \Psi_f | \rho(\mathbf{q}) | \Psi_0 \rangle|^2 \delta \left(E_f - E_0 - \omega + \frac{\mathbf{q}^2}{2M} \right)$$
$$R_T(\omega, \mathbf{q}) = \sum_f |\langle \Psi_f | J_T(\mathbf{q}) | \Psi_0 \rangle|^2 \delta \left(E_f - E_0 - \omega + \frac{\mathbf{q}^2}{2M} \right)$$

^{®твимғ} Inelastic e-Scattering ⁴He(e,e')X

Calculation of $R_L(\omega, \mathbf{q})$ with the LIT and hyperspherical harmonics Medium-q kinematics S.B. et al., PRL 102, 162501 (2009)

New project: compare ab-initio methods to account for FSI with spectral function approach (with Noemi Rocco)

Coulomb Sum Rule with CC

With Tianrui Xu, B.Sci at UBC

$$S_L(q) = \frac{1}{Z} \int_{\omega_{th}}^{\infty} d\omega \frac{R_L(\omega, q)}{G_E^{p\ 2}(Q^2)} \quad \mbox{Total inelastic strength}$$

Expand charge operator in multipoles and calculate it for different q

We will use a two-body force derived from chiral EFT (Entem and Machleidt N³LO)

Coulomb Sum Rule in ⁴He

Convergence in terms of multipoles

Coulomb Sum Rule in ⁴He

Convergence in terms of multipoles

Coulomb Sum Rule in ¹⁶O

See talks by S.Pastore, A.Schwenk

Two-body currents (or MEC) play a crucial role in double beta decay and lepton-scattering

Adapted from L. Girlanda, *et al.* EPJ Web of Conferences 3, 01004 (2010)

With Oscar Javier Hernandez, PhD student at UBC

- Performed the multipole expansion of the NLO current at finite q need for neutrino scattering
- Check the low-momentum case of magnetic dipole for the deuterium susceptibility

$$\chi_M = \frac{2\alpha}{3} \int d\omega \frac{R_M(\omega)}{\omega} \qquad R_M(\omega) = \frac{1}{2J_0 + 1} \sum_N |\langle N|\mu|N_0\rangle|^2 \delta(E_N - E_0 - \omega)$$

Deuteron	Potential	Current	Susceptibility [fm ³]
Our work	AV18	LO	0.0678
Friar*	AV18	LO	0.0678
Our work	AV18	NLO	0.0756
Our work	AV18	NLO+ Δ	0.0776
Friar*	AV18	NLO+ Δ	0.0774

*J. Friar and G.L. Payne, Phys. Rev. C 56 619 (1997)

With Oscar Javier Hernandez, PhD student at UBC

- Performed the multipole expansion of the NLO current at finite q need for neutrino scattering
- Check the low-momentum case of magnetic dipole for the deuterium susceptibility

$$\chi_M = \frac{2}{3} \int d\omega \frac{R_M(\omega)}{\omega} \qquad R_M(\omega) = \frac{1}{2J_0 + 1} \sum_N |\langle N|\mu|N_0\rangle|^2 \delta(E_N - E_0 - \omega)$$

Deuteron	Potential	Current	Susceptibility [fm ³]
Our work	AV18	LO	0.0678
Friar*	AV18	LO	0.0678 } 11% enhancement
Our work	AV18	NLO	0.0756
Our work	AV18	$NLO+\Delta$	0.0776
Friar*	AV18	NLO+ Δ	0.0774 J

*J. Friar and G.L. Payne, Phys. Rev. C 56 619 (1997)

• To do: apply to heavier nuclei using coupled-cluster theory

Magnetic Sum Rule

$$S_M = \int d\omega \ R_M(\omega)$$

Validation for ⁴He

Comparison of coupled cluster with exact hyperspherical harmonics (EIHH) with NN forces at N³LO

1-body operator Preliminary

Method	in µ _N ²	
EIHH	1.69	
CCSD	1.62	
CCSD+(T)	1.74	

Outlook

- Possibly some of the technology developed for this program can be useful to double-beta decay program:
 - Gamow-Teller strength functions
 - Role of subnuclear degrees of freedom in quenching factors

Thank you for your attention!