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Here the mk’s are the masses of the three light neutrinos
and U is the matrix that transforms states with well-
defined mass into states with well-defined flavor &e.g.,
electron, mu, tau'. Equation &2' gives the !!&0"' rate if
the exchange of light Majorana neutrinos with left-
handed interactions is responsible. Other mechanisms
are possible &see Secs. III and IV.D', but they require the
existence of new particles and/or interactions in addition

to requiring that neutrinos be Majorana particles. Light-
neutrino exchange is therefore, in some sense, the
“minima” mechanism and the most commonly consid-
ered.

That neutrinos mix and have mass is now accepted
wisdom. Oscillation experiments constrain U fairly
well—Table I summarizes our current knowledge—but
they determine only the differences between the squares
of the masses mk &e.g., m2

2−m1
2' rather than the masses

themselves. It will turn out that !!&0"' is among the best
ways of getting at the masses &along with cosmology and
!-decay measurements', and the only practical way to
establish that neutrinos are Majorana particles.

To extract the effective mass from a measurement, it
is customary to define a nuclear structure factor FN
#G0"&Q!! ,Z'(M0"(2me

2, where me is the electron mass.
&The quantity FN is sometimes written as Cmm.' The ef-
fective mass !m!!" can be written in terms of the calcu-
lated FN and the measured half-life as

!m!!" = me)FNT1/2
0" *−1/2. &4'

The range of mixing matrix values given in Table I, com-
bined with calculated values for FN, allow us to estimate
the half-life a given experiment must be able to measure
in order to be sensitive to a particular value of !m!!".
Published values of FN are typically between 10−13 and
10−14 yr−1. To reach a sensitivity of !m!!"+0.1 eV there-
fore an experiment must be able to observe a half-life of
1026–1027 yr. As we discuss later, at this level of sensitiv-
ity an experiment can draw important conclusions
whether or not the decay is observed.

The most sensitive limits thus far are from the
Heidelberg-Moscow experiment: T1/2

0" &76Ge'#1.9$1025

yr &Baudis et al., 1999', the IGEX experiment:
T1/2

0" &76Ge'#1.6$1025 yr &Aalseth et al., 2002a, 2004',
and the CUORICINO experiment: T1/2

0" &130Te'#3.0
$1024 yr &Arnaboldi et al., 2005, 2007'. These experi-
ments contained 5–10 kg of the parent isotope and ran
for several years. Hence increasing the half-life sensitiv-
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FIG. 2. Feynman diagrams for !!&2"' &top' and !!&0"' &bot-
tom'.

TABLE I. Neutrino mixing parameters as summarized by the Particle Data Book )Yao et al. &2006'*
based on the individual experimental reference reporting. The limit on !m!" and % are based on the
references given. The !m!!" limit comes from the Ge experiments. The parameter values would be
slightly different if determined by a global fit to all oscillation data &Fogli et al., 2006'.

Parameter Value Confidence level Reference

sin2&2&12' 0.86−0.04
+0.03 68% Aharmin et al. &2005'

sin2&2&23' '0.92 90% Ashie et al. &2005'
sin2&2&13' (0.19 90% Apollonio et al. &1999'
)m21

2 8.0−0.3
+0.4$10−5 eV2 68% Aharmin et al. &2005'

()m32
2 ( 2.4−0.5

+0.6$10−3 eV2 90% Ashie et al. &2004'
!m!" (2 eV 95% Lobashev et al. &1999'; Kraus et al. &2005'
!m!!" (0.7 eVa 90% Klapdor-Kleingrothaus et al. &2001a'; Aalseth

et al. &2002a'
% (2 eV 95% Elgaroy and Lahov &2003'

aUsing the matrix element of Rodin et al. &2006'.
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Figure 6. Value of the e↵ective Majorana mass |m�� | as a function of the lightest
neutrino mass in the cases of 3⌫ and 3+1 mixing with Normal and Inverted Ordering
of the three lightest neutrinos [210]. The signs in the legends indicate the signs of
ei↵2 , ei↵3 , ei↵4 = ±1 for the cases in which CP is conserved. The intermediate yellow
regions are allowed only in the case of CP violation.

produced by Big Bang Nucleosynthesis (BBN). In Subsection 6.3 we discuss the e↵ects of

light sterile neutrinos on the formation of Large Scale Structures (LSS), which occurred

after the sterile neutrinos became non-relativistic. Finally, in Subsection 6.4 we review

the current cosmological bounds on light sterile neutrinos.

6.1. Neutrino parameterization

It is convenient to parametrize the neutrino contribution to the radiation content in the

early Universe in terms of an e↵ective number of degrees of freedom Ne↵ , such that the
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Here the mk’s are the masses of the three light neutrinos
and U is the matrix that transforms states with well-
defined mass into states with well-defined flavor &e.g.,
electron, mu, tau'. Equation &2' gives the !!&0"' rate if
the exchange of light Majorana neutrinos with left-
handed interactions is responsible. Other mechanisms
are possible &see Secs. III and IV.D', but they require the
existence of new particles and/or interactions in addition

to requiring that neutrinos be Majorana particles. Light-
neutrino exchange is therefore, in some sense, the
“minima” mechanism and the most commonly consid-
ered.

That neutrinos mix and have mass is now accepted
wisdom. Oscillation experiments constrain U fairly
well—Table I summarizes our current knowledge—but
they determine only the differences between the squares
of the masses mk &e.g., m2

2−m1
2' rather than the masses

themselves. It will turn out that !!&0"' is among the best
ways of getting at the masses &along with cosmology and
!-decay measurements', and the only practical way to
establish that neutrinos are Majorana particles.

To extract the effective mass from a measurement, it
is customary to define a nuclear structure factor FN
#G0"&Q!! ,Z'(M0"(2me

2, where me is the electron mass.
&The quantity FN is sometimes written as Cmm.' The ef-
fective mass !m!!" can be written in terms of the calcu-
lated FN and the measured half-life as

!m!!" = me)FNT1/2
0" *−1/2. &4'

The range of mixing matrix values given in Table I, com-
bined with calculated values for FN, allow us to estimate
the half-life a given experiment must be able to measure
in order to be sensitive to a particular value of !m!!".
Published values of FN are typically between 10−13 and
10−14 yr−1. To reach a sensitivity of !m!!"+0.1 eV there-
fore an experiment must be able to observe a half-life of
1026–1027 yr. As we discuss later, at this level of sensitiv-
ity an experiment can draw important conclusions
whether or not the decay is observed.

The most sensitive limits thus far are from the
Heidelberg-Moscow experiment: T1/2

0" &76Ge'#1.9$1025

yr &Baudis et al., 1999', the IGEX experiment:
T1/2

0" &76Ge'#1.6$1025 yr &Aalseth et al., 2002a, 2004',
and the CUORICINO experiment: T1/2

0" &130Te'#3.0
$1024 yr &Arnaboldi et al., 2005, 2007'. These experi-
ments contained 5–10 kg of the parent isotope and ran
for several years. Hence increasing the half-life sensitiv-
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FIG. 2. Feynman diagrams for !!&2"' &top' and !!&0"' &bot-
tom'.

TABLE I. Neutrino mixing parameters as summarized by the Particle Data Book )Yao et al. &2006'*
based on the individual experimental reference reporting. The limit on !m!" and % are based on the
references given. The !m!!" limit comes from the Ge experiments. The parameter values would be
slightly different if determined by a global fit to all oscillation data &Fogli et al., 2006'.

Parameter Value Confidence level Reference

sin2&2&12' 0.86−0.04
+0.03 68% Aharmin et al. &2005'

sin2&2&23' '0.92 90% Ashie et al. &2005'
sin2&2&13' (0.19 90% Apollonio et al. &1999'
)m21

2 8.0−0.3
+0.4$10−5 eV2 68% Aharmin et al. &2005'

()m32
2 ( 2.4−0.5

+0.6$10−3 eV2 90% Ashie et al. &2004'
!m!" (2 eV 95% Lobashev et al. &1999'; Kraus et al. &2005'
!m!!" (0.7 eVa 90% Klapdor-Kleingrothaus et al. &2001a'; Aalseth

et al. &2002a'
% (2 eV 95% Elgaroy and Lahov &2003'

aUsing the matrix element of Rodin et al. &2006'.
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TABLE VI: Calculated limits of half-lives ratios, Eq. (14), for di↵erent combinations of isotopes (see text for
details). For example, in the combination Ge/Se (1) corresponds to Ge and (2) to Se.

Ge/Se Ge/Te Ge/Xe Se/Te Se/Xe Te/Xe

Ge Se Ge Te Ge Xe Se Te Se Xe Te Xe

G0⌫
01 ⇥ 1014 0.237 1.018 0.237 1.425 0.237 1.462 1.018 1.425 1.018 1.462 1.425 1.462

M0⌫(1/2) 3.57 3.39 3.57 1.93 3.57 1.76 3.39 1.93 3.39 1.76 1.93 1.76

M0N (1/2) 202 187 202 136 202 143 187 136 187 143 136 143

T ⌫
1/2(1)/T

⌫
1/2(2) 3.87 1.76 1.50 0.45 0.39 0.85

TN
1/2(1)/T

N
1/2(2) 3.68 2.73 3.09 0.74 0.84 1.13

R(N/⌫) present 0.95 1.55 2.06 1.63 2.17 1.33

R(N/⌫) [45] 1.02 1.39 1.42 1.36 1.39 1.03

V. DISENTANGLING THE HEAVY NEUTRINO
CONTRIBUTION

As mentioned in Section II, if the ⌘� and ⌘⌘ contribu-
tions could be ruled out by the two-electron energy and
angular distributions analyzed in the previous section, in
that case, assuming a seesaw type I dominance [36] the
half-life is given by Eq. (3). Then, the relative contri-
bution of the ⌘⌫ and ⌘RNR

terms can be identified if one
measures the half-life of at least two isotopes [5, 24], pro-
vided that the corresponding matrix elements M0⌫ and
M0N are known with good precision. Ref. [5, 24] al-
ready provided some limits of the ratios of the half-lives
of di↵erent isotopes based on older QRPA calculations.
However, based on those calculations, the two limits for

r(⌫/N) ⌘ T ⌫/N
1/2 (1)/T ⌫/N

1/2 (2)

r(⌫/N) =
G0⌫

01(2)
��M0⌫/N (2)

��2

G0⌫
01(1)

��M0⌫/N (1)
��2
, (14)

were too close to allow for a good separation of the con-
tribution of these two mechanisms. In Eq. (14) (1) and
(2) designate members of a pair of isotopes. Below, we
present the results based on our shell model calculations
given in see Tables III and IV of Ref. [7]. In Table VI
Ge, Se, Te, and Xe are short-hand notions for 76Ge, 82Se,
130Te, and 136Xe respectively. In the table we only use
the NME calculated with CD-Bonn short-range correla-
tions. The G0⌫

01 factors from Table III of Ref. [30] were
used (they are very close to those of Ref. [46])

The pre-last line in Table VI presents the ratio of the
ratios of half-lives, R(N/⌫) = r(N)/r(⌫), calculated with
our NME. On can see that the largest ratio is obtained for
the combination 82Se/136Xe. Its magnitude larger than
2 indicates that on can di↵erentiate between these two
limits if the half-lives are known with reasonable uncer-
tainties, and provided that the NME can be calculated
with su�cient precision. The last line in Table VI shows
the same quantity calculated with the recent QRPA NME
taken from Table I (columns d) of Ref. [45]. On can see
that these ratios are not as favorable in identifying the

two limits. This analysis emphasizes again the need of
having reliable NME for all mechanisms.

VI. CONCLUSIONS

In this paper we calculate nuclear matrix ele-
ments, phase space factors, and half-lives for the
0⌫�� (0+ ! 0+) decay of 82Se under di↵erent scenarios
that include, besides the mass mechanism, the mixed
right-handed/left-handed currents contributions known
as ⌘ and � mechanisms. For the mass mechanism dom-
inance scenario the results are consistent with previous
calculations [10] using the same Hamiltonian. Inclusion
of contributions from ⌘ and � mechanisms have the ten-
dency to decrease the half-lives.
We present the two-electrons angular and energy dis-

tributions for five theoretical scenarios of mixing between
mass mechanisms contributions,and ⌘ and � mechanism
contributions. From the figures presented in the paper
one can recover the general conclusion [26] that the en-
ergy distribution can be used to distinguish between the
mass mechanism and the � mechanism, while the angular
distribution can be used in addition to the energy distri-
bution to distinguish between the mass mechanism and
the ⌘ mechanism, but the identification could be more
nuanced due to the lack of knowledge of the interference
phases. In the case of the energy distributions for the
mass mechanism dominance (blue line) and the � mech-
anism dominance (green band in Figure 2 lower panel),
we find similar results to those of Figure 2 in Ref. [27].
However, our results emphasize the significant role of the
interference phases �1 and �2 in identifying the e↵ect.
We also find out from the analysis of Case 3 that if the

e↵ective neutrino mass is very small, close to zero, and
the ⌘ and � mechanisms are competing, then one can
potentially identify this scenario from the � dominance,
Case 2, by comparing the ratio min-to-max in the angu-
lar distributions and/or by the behavior of the angular
correlation coe�cient for almost equal electron energies.
The small interference e↵ects in Case 3 could be also used
as an additional identification tool.
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As mentioned in Section II, if the ⌘� and ⌘⌘ contribu-
tions could be ruled out by the two-electron energy and
angular distributions analyzed in the previous section, in
that case, assuming a seesaw type I dominance [36] the
half-life is given by Eq. (3). Then, the relative contri-
bution of the ⌘⌫ and ⌘RNR

terms can be identified if one
measures the half-life of at least two isotopes [5, 24], pro-
vided that the corresponding matrix elements M0⌫ and
M0N are known with good precision. Ref. [5, 24] al-
ready provided some limits of the ratios of the half-lives
of di↵erent isotopes based on older QRPA calculations.
However, based on those calculations, the two limits for
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ratios of half-lives, R(N/⌫) = r(N)/r(⌫), calculated with
our NME. On can see that the largest ratio is obtained for
the combination 82Se/136Xe. Its magnitude larger than
2 indicates that on can di↵erentiate between these two
limits if the half-lives are known with reasonable uncer-
tainties, and provided that the NME can be calculated
with su�cient precision. The last line in Table VI shows
the same quantity calculated with the recent QRPA NME
taken from Table I (columns d) of Ref. [45]. On can see
that these ratios are not as favorable in identifying the

two limits. This analysis emphasizes again the need of
having reliable NME for all mechanisms.

VI. CONCLUSIONS

In this paper we calculate nuclear matrix ele-
ments, phase space factors, and half-lives for the
0⌫�� (0+ ! 0+) decay of 82Se under di↵erent scenarios
that include, besides the mass mechanism, the mixed
right-handed/left-handed currents contributions known
as ⌘ and � mechanisms. For the mass mechanism dom-
inance scenario the results are consistent with previous
calculations [10] using the same Hamiltonian. Inclusion
of contributions from ⌘ and � mechanisms have the ten-
dency to decrease the half-lives.
We present the two-electrons angular and energy dis-

tributions for five theoretical scenarios of mixing between
mass mechanisms contributions,and ⌘ and � mechanism
contributions. From the figures presented in the paper
one can recover the general conclusion [26] that the en-
ergy distribution can be used to distinguish between the
mass mechanism and the � mechanism, while the angular
distribution can be used in addition to the energy distri-
bution to distinguish between the mass mechanism and
the ⌘ mechanism, but the identification could be more
nuanced due to the lack of knowledge of the interference
phases. In the case of the energy distributions for the
mass mechanism dominance (blue line) and the � mech-
anism dominance (green band in Figure 2 lower panel),
we find similar results to those of Figure 2 in Ref. [27].
However, our results emphasize the significant role of the
interference phases �1 and �2 in identifying the e↵ect.
We also find out from the analysis of Case 3 that if the

e↵ective neutrino mass is very small, close to zero, and
the ⌘ and � mechanisms are competing, then one can
potentially identify this scenario from the � dominance,
Case 2, by comparing the ratio min-to-max in the angu-
lar distributions and/or by the behavior of the angular
correlation coe�cient for almost equal electron energies.
The small interference e↵ects in Case 3 could be also used
as an additional identification tool.

r(v / N ) ≡ T1/2
v/N (1) /T1/2

v/N (2)

R(N / v) = r(N ) / r(v)
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2

(2Ji +1)
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quenched! →!!! 0.77gA

The contributions from 2b currents depend on the density
of the reference state. We consider a typical range for
nuclei ! ¼ 0:10; . . . ; 0:12 fm"3, which corresponds to av-
erage nucleon momenta Q# 150–200 MeV, so that 2b
currents are expected to be more important compared to
very light nuclei. For these densities, we have Ið!; PÞ ¼
0:64; . . . ; 0:66, using the Fermi-gas mean value P2 ¼
6k2F=5, and Ið!; PÞ ¼ 0:58; . . . ; 0:60 for P ¼ 0, so the
total-momentum dependence is very weak.

The effective 1b current Jeffi;2b only contributes to the GT

operator and can be included as a correction to the gAðp2Þ
part of the 1b current, Eq. (2). This result is general for a
spin and isospin symmetric reference state. Beyond the
Fermi-gas evaluation, only the momentum dependence
will be replaced by a state or orbital dependence.

For cD ¼ 0, the leading 2b currents are fully determined
by the couplings c3, c4 from nuclear forces. We take c3, c4
from the N3LO NN potentials of Ref. [16] (EM) or
Ref. [17] (EGM), as well as from a NN partial wave
analysis (PWA) extraction [18]. Because the c3, c4 are
large in chiral EFTwithout explicit Deltas, we also explore
typical changes expected at higher order "c3 ¼ ""c4 &
1 GeV"1 [4]. The different c3, c4 are listed in Table I.
As shown, the corresponding long-range parts of chiral
2b currents predict a quenching of the GT operator at
p ¼ 0 ranging from q ¼ 0:85; . . . ; 0:66 for densities ! ¼
0:10; . . . ; 0:12 fm"3. The largest quenching is obtained
from the largest 2c4-c3 coupling, which is closest to the
single-Delta excitation with 2c4-c3 & 15 GeV"1. The den-
sity dependence of the 2b-current contributions for cD ¼ 0
is also shown as the inset in Fig. 3.

This demonstrates that chiral 2b currents naturally con-
tribute to the quenching of GT transitions. A reduction of
gA in the currents is also expected considering chiral 3N
forces as density-dependent two-body interactions [19].
We can constrain the short-range coupling cD by requiring
to reproduce an empirical quenching q ¼ 0:74 needed in
many-body calculations [2]. This leads to values jcDj< 1
in Table I, which is compatible with independent

determinations from 3N forces, especially in the best-
studied EM case [6,20]; e.g., cD’s obtained from the 3H
half-life fit [6] lead to q ¼ 0:75; . . . ; 0:67. Because part of
the quenching may be due to truncations in the many-body
basis, we can ask what values of cD are needed to repro-
duce a smaller quenching q ¼ 0:96 (based on a
model-dependent extraction q2 ¼ 0:92 from GT strength
functions [21]). As shown in Table I, the resulting cD are
more negative, which seems compatible with 3N force fits
only for the EGM and PWA cases [20]. Because of these

TABLE I. Quenching q of the p ¼ 0 GT operator predicted by the long-range parts of 2b
currents (cD ¼ 0) for given c3, c4 couplings. Dots correspond to a density range ! ¼
0:10; . . . ; 0:12 fm"3, and all c3, c4 values are in GeV"1. In addition, we give the short-range
coupling cD obtained by requiring that 2b currents lead to a quenching of q ¼ 0:74 or q ¼ 0:96
over this density range. For given q, the * values correspond to the weakest or strongest p
dependence in Fig. 3 (smallest or largest jc3j!), which yield the thin bars in Fig. 2.

cD ¼ 0 q ¼ 0:74 q ¼ 0:96
c3 2c4-c3 q cD

EM "3:2 14.0 0.72,. . .,0.66 "0:17; . . . ;"0:70 "2:34; . . . ;"2:51
EMþ "ci "2:2 11.0 0.78,. . .,0.73 0:40(; . . . ;"0:11 "1:78(; . . . ;"1:92
EGM "3:4 10.2 0.80,. . .,0.75 0.55,. . .,0.04 "1:63; . . . ;"1:77
EGMþ "ci "2:4 7.2 0.85,. . .,0.82 1.11,. . .,0.63 "1:06; . . . ;"1:18
PWA "4:78 12.7 0.75,. . .,0.69 0:08; . . . ;"0:44( "2:10; . . . ;"2:26(

PWAþ "ci "3:78 9.7 0.81,. . .,0.76 0.64,. . .,0.14 "1:53; . . . ;"1:67
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FIG. 3 (color online). Top: gA plus 2b-current contributions for
p ¼ 0 GT transitions normalized to gA as a function of density
!. The boundaries of the box are given by q ¼ 0:74; . . . ; 0:96
and ! ¼ 0:10; . . . ; 0:12 fm"3. The different curves correspond to
the couplings in Table I, with shaded regions for the density
range. Intermediate q values would lie between these regions.
The inset shows the quenching predicted by the long-range parts
of 2b currents only (cD ¼ 0). Bottom: Same as top, but as a
function of momentum transfer p for empirical (q ¼ 0:74) or
smaller (q ¼ 0:96) quenching.
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TABLE XVI. Calculated values of 2νββ matrix elements in IBM-
2 with gA = 1.269 and the ISM with gA = 1.25.

A Ã (MeV) |mec
2M (2ν)|

ÃCA
GT ÃSSD

GT IBM-2 ISMa expb

CA
GT

SSD
GT

CA
exp

SSD
exp

48 7.72c 0.10 0.05 0.038(3)
76 9.41c 0.24 0.15 0.118(5)
82 10.1c 0.18 0.15 0.083(4)
96 11.0 2.20 0.10 0.51 0.080(4) 0.075(4)
100 11.2 1.69 0.13 0.89 0.206(7) 0.185(6)
110 11.8 1.89 0.13 0.80
116 12.1 1.88 0.10 0.63 0.114(5) 0.106(4)
124 12.5 0.12
128 12.5c 0.15 0.044(6)
130 13.3c 0.13 0.07 0.031(4)
136 13.1 0.11 0.06 0.0182(17)
148 13.6 0.05
150 13.7 1.88 0.06 0.42 0.058(4) 0.052(4)
154 13.9 0.07
160 14.2 0.11
198 15.8 0.03

aReference [38].
bReference [8].
cReference [21]

elements are largely spurious in nuclei where protons and
neutrons occupy the same major shell.

We investigate two choices of ÃGT . The first choice is
that taken from Ref. [21] or estimated by the systematics,
ÃGT = 1.12A1/2 MeV, where A without tilde denotes the
mass number. In cases where transitions between spin-orbit
partners dominate, one expects the SSD approximation to be
appropriate. Our second choice is SSD for 40Zr, 42Mo, 46Pd,
and 48Cd, where the dominant transition is g9/2–g7/2, and 60Nd,
where the dominant transition is h11/2–h9/2. In the same table
we also show the values of the matrix elements in the ISM
without the closure approximation [38]. The ISM calculation
are all in nuclei in which protons and neutrons occupy the
same major shell. By comparing these calculations with those
in IBM-2 with the Fermi matrix elements set to zero we see
that the two calculations have the same behavior with mass
number but differ by a factor of approximately 2. The last
columns in Table XVI gives the values of the matrix elements
|Meff

2ν | extracted from experiment [8].
If we write the matrix elements M2ν as

Meff
2ν =

(
gA,eff

gA

)2

M2ν, (38)

where (gA,eff/gA) = q is a quenching factor, by comparing
the experimental values M2ν,exp with the calculated values (or
the experimental half-lives with those calculated using PSFs of
[8]) we can extract the values of gA,eff . These are given in Table
XVII and Fig. 13 for IBM-2 (GT) and the ISM. As mentioned
in Sec. II, the renormalization of gA to gA,eff is due to two main
reasons: (1) limitation of the model space in which calculations
are done and (2) omission of non-nucleonic degrees of freedom
(#, N∗, . . .). As a result, one expects gA,eff to have a smooth

from experimental τ1 2 ISM gA 1.25A 0.12

from experimental τ1 2 IBM 2 GT
CA SSD gA 1.25A 0.18

NdCa Ge Se Zr Mo Cd Te Xe
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FIG. 13. (Color online) Value of gA,eff extracted from experiment
for IBM-2 and the ISM.

behavior with A to which shell effects are superimposed. We
see from Fig. 13 that this is approximately the case if we
assume SSD in 40Zr, 42Mo, 48Cd, and 60Nd. This is consistent
with previous analyses [85,86]. The smooth behavior can be
parametrized as gIBM-2

A,eff = 1.269A−γ , with γ = 0.18 for IBM-2
(GT). This gives for the neutron (A = 1) the free value. The
same type of analysis can be done for the ISM. The values of
gA,eff extracted by comparing the calculated and experimental
matrix elements are also shown in Table XVII and Fig. 13.
We see that gA,eff in the ISM has the same behavior as in
IBM-2, except for its larger value. It can be parametrized as
gISM

A,eff = 1.269A−γ with γ = 0.12. In Ref. [38] the value 0.93
was used for 48Ca, 76Ge, and 82Se and 0.71 for 130Te and 136Xe.

The question of how to extract gA,eff in the QRPA has been
the subject of many investigations [11]. In this case gA,eff can
be extracted either from 2νββ or from single-β decay [89].
We do not discuss this extraction here but simply note that the
values extracted are similar but larger than those in Table XVII
and Fig. 13.

Values of (gA,eff)2 can also be extracted from single-β decay
or electron capture using a Fermi-surface quasiparticle (FSQP)
model [90] where

(gA,eff)2 = geff
i geff

f (39)

is the product of geff
i for the transition from even-even to odd-

odd nuclei and geff
f for the transition from odd-odd to even-even

nuclei. The values obtained in this way [91] are also similar to
those in Table XVII and Fig. 13. Finally, very recently, values
of gIBM-2

A,eff,2νββ have been extracted from a 2νββ calculation
without the closure approximation for 128,130Te→128,130Xe
decay with similar results [75]. As one can see from the
discussion in the paragraphs above, the extraction of the actual
value of gA,eff is highly dependent on the model calculations
and the assumptions made. All extractions, however, indicate
values of gA,eff in the range gISM

A,eff ∼ 0.57–0.90 and gIBM-2
A,eff ∼

0.35–0.71 depending on mass number A and on the SSD
approximation or the CA, with decreasing trend with A.

It is of considerable interest to analyze the impact that
the quenching of gA to gA,eff observed in single-β and 2νββ
decay may have on 0νββ. The question of whether or not
the quenching of gA is the same in 2νββ as in 0νββ is the

014315-15
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Fig. 1. (Color online.) The running sum of the Gamow–Teller strength of 136Xe (en-
ergies in MeV). The theoretical strength is normalized to the experimental one.

It is well known that the effective Gamow–Teller operator σ⃗ t±

for complete harmonic oscillator valence spaces can be approxi-
mated by q · σ⃗ t± . q is called the quenching factor and behaves as
a sort of effective GT charge (see Ref. [9] for a recent update of
this topic). The value of q has been fitted throughout the nuclear
chart and the resulting values are 0.82, 0.77, and 0.74 for the p, sd
and pf shells. Asymptotically it tends to 0.7. With the quoted value
of q for the pf shell the half-life of the 2ν double beta decay of
48Ca [10] could be predicted in perfect agreement with the later
measured value [11]. The problem arises when we try to describe
heavier emitters in which the minimal complete valence spaces
(in the harmonic oscillator sense) are still out of reach computa-
tionally. A possible solution is to carry out a fit to all the experi-
mentally available GT decays. We did this exercise in our valence
space and the resulting value was q = 0.57. A more accurate way
of estimating the quenching factor is by comparing the theoret-
ical predictions for the Gamow–Teller strength functions relevant
for the process with the experimental results obtained in charge
exchange reactions. These data were not available for the 136Xe
case until the advent of the results of the 136Xe (3He, t) 136Cs re-
action in the appropriate kinematics, which have been published
very recently [12]. These results impact in our calculations in two
ways; first because they give us the excitation energy of the first
1+ state in 136Cs, 0.59 MeV, unknown till now, which appears in
the energy denominator of Eq. (2), and secondly because it makes
it possible to extract directly the quenching factor adequate for this
process.

In what follows, we use for the A = 136 isobars the wave func-
tions that result of the large scale shell model calculations in
the same valence space and with the same effective interaction
which we had used in our calculation of the 0ν matrix elements
of 124Sn, 128Te, 130Te and 136Xe in Ref. [13]. First, we compare in
Fig. 1 the theoretical running sum of the B(GT−) strength of 136Xe
with the experimental data from [12]. We have normalized the
total theoretical strength in the experimental energy window to
the measured one. This implies a quenching q = 0.45. Notice the
very good agreement between the theoretical and experimental
strength functions. If we had shifted the theoretical position of the
first excited state of 136Xe to its experimental value, the quenching
factor would have been slightly larger.

Then we compute the 2ν matrix element with the quenching
factor extracted above. The result is given in Fig. 2 in the form
of a running sum. The final matrix element M2ν = 0.025 MeV−1

agrees nicely with the experimental value. However, one should

Fig. 2. The running sum of the 2ν matrix element of the double beta decay of 136Xe
(energies in MeV).

Table 2
The ISM predictions for the matrix element of several 2ν double beta decays
(in MeV−1). See text for the definitions of the valence spaces and interactions.

M2ν (exp) q M2ν (th) INT
48Ca → 48Ti 0.047 ± 0.003 0.74 0.047 kb3
48Ca → 48Ti 0.047 ± 0.003 0.74 0.048 kb3g
48Ca → 48Ti 0.047 ± 0.003 0.74 0.065 gxpf1
76Ge → 76Se 0.140 ± 0.005 0.60 0.116 gcn28:50
76Ge → 76Se 0.140 ± 0.005 0.60 0.120 jun45
82Se → 82Kr 0.098 ± 0.004 0.60 0.126 gcn28:50
82Se → 82Kr 0.098 ± 0.004 0.60 0.124 jun45

128Te → 128Xe 0.049 ± 0.006 0.57 0.059 gcn50:82
130Te → 130Xe 0.034 ± 0.003 0.57 0.043 gcn50:82
136Xe → 136Ba 0.019 ± 0.002 0.45 0.025 gcn50:82

bear in mind that the absolute normalization of the Gamow–Teller
strength extracted from the charge exchange reactions may be af-
fected by systematic errors, which could lead to modifications of
the extracted quenching factor. Minor variants of the gcn50:82 in-
teraction which locally improve the quadrupole properties of 136Ba
lead to q = 0.48 and M2ν = 0.021 MeV−1. Comparing Fig. 1 and
Fig. 2 it is evident that the nuclear matrix element M2ν does
not saturate in the experimentally studied energy window. In fact,
according to the calculation, about 40% of the total 2ν matrix ele-
ment comes from states above it.

For completeness, we present in Table 2 a compilation of the
2ν matrix element elements for which there are large scale shell
model calculations. For the results of QRPA-like calculations see
Refs. [14–17].

In the calculation of the decay of 48Ca, the valence space is
the full pf shell and the interactions are defined in Refs. [18]
(kb3), [19] (kb3g), and [20] (gxpf1). The details can be found in
Refs. [10,21]. The quenching factor comes from a fit to all the ex-
perimentally available Gamow–Teller decays in the region using
the kb3 interaction [22]. No equivalent fits are available for kb3g or
gxpf1, therefore we use the same quenching factor for all of them.
We are convinced that the differences would be negligible in this
case.

For the decays of 76Ge and 82Se we take a core of 56Ni
and the valence space spanned by the orbits 1p3/2, 0f5/2, 1p1/2,
and 0g9/2. The interactions are defined in Refs. [23] (gcn28:50) and
[24] (jun45). There is a published calculation with a preliminary
version of jun45 in Ref. [25]. The value of the quenching factor
q = 0.60 was obtained in this reference from a fit to the Gamow–
Teller decays in the region. As there are no fits available with the

G2v, G0v ∝ gA
4
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Fig. 1. (Color online.) The running sum of the Gamow–Teller strength of 136Xe (en-
ergies in MeV). The theoretical strength is normalized to the experimental one.

It is well known that the effective Gamow–Teller operator σ⃗ t±

for complete harmonic oscillator valence spaces can be approxi-
mated by q · σ⃗ t± . q is called the quenching factor and behaves as
a sort of effective GT charge (see Ref. [9] for a recent update of
this topic). The value of q has been fitted throughout the nuclear
chart and the resulting values are 0.82, 0.77, and 0.74 for the p, sd
and pf shells. Asymptotically it tends to 0.7. With the quoted value
of q for the pf shell the half-life of the 2ν double beta decay of
48Ca [10] could be predicted in perfect agreement with the later
measured value [11]. The problem arises when we try to describe
heavier emitters in which the minimal complete valence spaces
(in the harmonic oscillator sense) are still out of reach computa-
tionally. A possible solution is to carry out a fit to all the experi-
mentally available GT decays. We did this exercise in our valence
space and the resulting value was q = 0.57. A more accurate way
of estimating the quenching factor is by comparing the theoret-
ical predictions for the Gamow–Teller strength functions relevant
for the process with the experimental results obtained in charge
exchange reactions. These data were not available for the 136Xe
case until the advent of the results of the 136Xe (3He, t) 136Cs re-
action in the appropriate kinematics, which have been published
very recently [12]. These results impact in our calculations in two
ways; first because they give us the excitation energy of the first
1+ state in 136Cs, 0.59 MeV, unknown till now, which appears in
the energy denominator of Eq. (2), and secondly because it makes
it possible to extract directly the quenching factor adequate for this
process.

In what follows, we use for the A = 136 isobars the wave func-
tions that result of the large scale shell model calculations in
the same valence space and with the same effective interaction
which we had used in our calculation of the 0ν matrix elements
of 124Sn, 128Te, 130Te and 136Xe in Ref. [13]. First, we compare in
Fig. 1 the theoretical running sum of the B(GT−) strength of 136Xe
with the experimental data from [12]. We have normalized the
total theoretical strength in the experimental energy window to
the measured one. This implies a quenching q = 0.45. Notice the
very good agreement between the theoretical and experimental
strength functions. If we had shifted the theoretical position of the
first excited state of 136Xe to its experimental value, the quenching
factor would have been slightly larger.

Then we compute the 2ν matrix element with the quenching
factor extracted above. The result is given in Fig. 2 in the form
of a running sum. The final matrix element M2ν = 0.025 MeV−1

agrees nicely with the experimental value. However, one should

Fig. 2. The running sum of the 2ν matrix element of the double beta decay of 136Xe
(energies in MeV).

Table 2
The ISM predictions for the matrix element of several 2ν double beta decays
(in MeV−1). See text for the definitions of the valence spaces and interactions.

M2ν (exp) q M2ν (th) INT
48Ca → 48Ti 0.047 ± 0.003 0.74 0.047 kb3
48Ca → 48Ti 0.047 ± 0.003 0.74 0.048 kb3g
48Ca → 48Ti 0.047 ± 0.003 0.74 0.065 gxpf1
76Ge → 76Se 0.140 ± 0.005 0.60 0.116 gcn28:50
76Ge → 76Se 0.140 ± 0.005 0.60 0.120 jun45
82Se → 82Kr 0.098 ± 0.004 0.60 0.126 gcn28:50
82Se → 82Kr 0.098 ± 0.004 0.60 0.124 jun45

128Te → 128Xe 0.049 ± 0.006 0.57 0.059 gcn50:82
130Te → 130Xe 0.034 ± 0.003 0.57 0.043 gcn50:82
136Xe → 136Ba 0.019 ± 0.002 0.45 0.025 gcn50:82

bear in mind that the absolute normalization of the Gamow–Teller
strength extracted from the charge exchange reactions may be af-
fected by systematic errors, which could lead to modifications of
the extracted quenching factor. Minor variants of the gcn50:82 in-
teraction which locally improve the quadrupole properties of 136Ba
lead to q = 0.48 and M2ν = 0.021 MeV−1. Comparing Fig. 1 and
Fig. 2 it is evident that the nuclear matrix element M2ν does
not saturate in the experimentally studied energy window. In fact,
according to the calculation, about 40% of the total 2ν matrix ele-
ment comes from states above it.

For completeness, we present in Table 2 a compilation of the
2ν matrix element elements for which there are large scale shell
model calculations. For the results of QRPA-like calculations see
Refs. [14–17].

In the calculation of the decay of 48Ca, the valence space is
the full pf shell and the interactions are defined in Refs. [18]
(kb3), [19] (kb3g), and [20] (gxpf1). The details can be found in
Refs. [10,21]. The quenching factor comes from a fit to all the ex-
perimentally available Gamow–Teller decays in the region using
the kb3 interaction [22]. No equivalent fits are available for kb3g or
gxpf1, therefore we use the same quenching factor for all of them.
We are convinced that the differences would be negligible in this
case.

For the decays of 76Ge and 82Se we take a core of 56Ni
and the valence space spanned by the orbits 1p3/2, 0f5/2, 1p1/2,
and 0g9/2. The interactions are defined in Refs. [23] (gcn28:50) and
[24] (jun45). There is a published calculation with a preliminary
version of jun45 in Ref. [25]. The value of the quenching factor
q = 0.60 was obtained in this reference from a fit to the Gamow–
Teller decays in the region. As there are no fits available with the

qexp
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Fig. 1. (Color online.) The running sum of the Gamow–Teller strength of 136Xe (en-
ergies in MeV). The theoretical strength is normalized to the experimental one.

It is well known that the effective Gamow–Teller operator σ⃗ t±

for complete harmonic oscillator valence spaces can be approxi-
mated by q · σ⃗ t± . q is called the quenching factor and behaves as
a sort of effective GT charge (see Ref. [9] for a recent update of
this topic). The value of q has been fitted throughout the nuclear
chart and the resulting values are 0.82, 0.77, and 0.74 for the p, sd
and pf shells. Asymptotically it tends to 0.7. With the quoted value
of q for the pf shell the half-life of the 2ν double beta decay of
48Ca [10] could be predicted in perfect agreement with the later
measured value [11]. The problem arises when we try to describe
heavier emitters in which the minimal complete valence spaces
(in the harmonic oscillator sense) are still out of reach computa-
tionally. A possible solution is to carry out a fit to all the experi-
mentally available GT decays. We did this exercise in our valence
space and the resulting value was q = 0.57. A more accurate way
of estimating the quenching factor is by comparing the theoret-
ical predictions for the Gamow–Teller strength functions relevant
for the process with the experimental results obtained in charge
exchange reactions. These data were not available for the 136Xe
case until the advent of the results of the 136Xe (3He, t) 136Cs re-
action in the appropriate kinematics, which have been published
very recently [12]. These results impact in our calculations in two
ways; first because they give us the excitation energy of the first
1+ state in 136Cs, 0.59 MeV, unknown till now, which appears in
the energy denominator of Eq. (2), and secondly because it makes
it possible to extract directly the quenching factor adequate for this
process.

In what follows, we use for the A = 136 isobars the wave func-
tions that result of the large scale shell model calculations in
the same valence space and with the same effective interaction
which we had used in our calculation of the 0ν matrix elements
of 124Sn, 128Te, 130Te and 136Xe in Ref. [13]. First, we compare in
Fig. 1 the theoretical running sum of the B(GT−) strength of 136Xe
with the experimental data from [12]. We have normalized the
total theoretical strength in the experimental energy window to
the measured one. This implies a quenching q = 0.45. Notice the
very good agreement between the theoretical and experimental
strength functions. If we had shifted the theoretical position of the
first excited state of 136Xe to its experimental value, the quenching
factor would have been slightly larger.

Then we compute the 2ν matrix element with the quenching
factor extracted above. The result is given in Fig. 2 in the form
of a running sum. The final matrix element M2ν = 0.025 MeV−1

agrees nicely with the experimental value. However, one should

Fig. 2. The running sum of the 2ν matrix element of the double beta decay of 136Xe
(energies in MeV).

Table 2
The ISM predictions for the matrix element of several 2ν double beta decays
(in MeV−1). See text for the definitions of the valence spaces and interactions.

M2ν (exp) q M2ν (th) INT
48Ca → 48Ti 0.047 ± 0.003 0.74 0.047 kb3
48Ca → 48Ti 0.047 ± 0.003 0.74 0.048 kb3g
48Ca → 48Ti 0.047 ± 0.003 0.74 0.065 gxpf1
76Ge → 76Se 0.140 ± 0.005 0.60 0.116 gcn28:50
76Ge → 76Se 0.140 ± 0.005 0.60 0.120 jun45
82Se → 82Kr 0.098 ± 0.004 0.60 0.126 gcn28:50
82Se → 82Kr 0.098 ± 0.004 0.60 0.124 jun45

128Te → 128Xe 0.049 ± 0.006 0.57 0.059 gcn50:82
130Te → 130Xe 0.034 ± 0.003 0.57 0.043 gcn50:82
136Xe → 136Ba 0.019 ± 0.002 0.45 0.025 gcn50:82

bear in mind that the absolute normalization of the Gamow–Teller
strength extracted from the charge exchange reactions may be af-
fected by systematic errors, which could lead to modifications of
the extracted quenching factor. Minor variants of the gcn50:82 in-
teraction which locally improve the quadrupole properties of 136Ba
lead to q = 0.48 and M2ν = 0.021 MeV−1. Comparing Fig. 1 and
Fig. 2 it is evident that the nuclear matrix element M2ν does
not saturate in the experimentally studied energy window. In fact,
according to the calculation, about 40% of the total 2ν matrix ele-
ment comes from states above it.

For completeness, we present in Table 2 a compilation of the
2ν matrix element elements for which there are large scale shell
model calculations. For the results of QRPA-like calculations see
Refs. [14–17].

In the calculation of the decay of 48Ca, the valence space is
the full pf shell and the interactions are defined in Refs. [18]
(kb3), [19] (kb3g), and [20] (gxpf1). The details can be found in
Refs. [10,21]. The quenching factor comes from a fit to all the ex-
perimentally available Gamow–Teller decays in the region using
the kb3 interaction [22]. No equivalent fits are available for kb3g or
gxpf1, therefore we use the same quenching factor for all of them.
We are convinced that the differences would be negligible in this
case.

For the decays of 76Ge and 82Se we take a core of 56Ni
and the valence space spanned by the orbits 1p3/2, 0f5/2, 1p1/2,
and 0g9/2. The interactions are defined in Refs. [23] (gcn28:50) and
[24] (jun45). There is a published calculation with a preliminary
version of jun45 in Ref. [25]. The value of the quenching factor
q = 0.60 was obtained in this reference from a fit to the Gamow–
Teller decays in the region. As there are no fits available with the

Physics Letters B 711 (2012) 62–64

Contents lists available at SciVerse ScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Shell Model description of the ββ decay of 136Xe

E. Caurier a, F. Nowacki a, A. Poves b,∗

a IPHC, IN2P3-CNRS/Université Louis Pasteur BP 28, F-67037 Strasbourg Cedex 2, France
b Departamento de Física Teórica, Universidad Autónoma de Madrid and Instituto de Física Teórica, UAM/CSIC, E-28049, Madrid, Spain

a r t i c l e i n f o a b s t r a c t

Article history:
Received 17 February 2012
Received in revised form 15 March 2012
Accepted 27 March 2012
Available online 29 March 2012
Editor: J.-P. Blaizot

Keywords:
Shell Model
Double beta decay matrix elements

We study in this Letter the double beta decay of 136Xe with emission of two neutrinos which has been
recently measured by the EXO-200 Collaboration. We use the same shell model framework, valence
space, and effective interaction that we have already employed in our calculation of the nuclear matrix
element (NME) of its neutrinoless double beta decay. Using the quenching factor of the Gamow–
Teller operator which is needed to reproduce the very recent high resolution 136Xe (3He, t) 136Cs
data, we obtain a nuclear matrix element M2ν = 0.025 MeV−1 compared with the experimental value
M2ν = 0.019(2) MeV−1.
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The double beta decay is a rare process (second order in the
weak interaction) which takes place when the single beta decay of
the parent even–even nucleus to the neighbor odd–odd nucleus is
forbidden by energy conservation or highly suppressed by the an-
gular momentum selection rules. In addition it is one of the major
sources of background for the even rarer neutrinoless decay which,
if detected, will settle the nature (Majorana or Dirac) and the mass
scale of the neutrinos. Until the EXO-200 measure [1] 136Xe was
the only (experimentally relevant) potential neutrinoless emitter
whose two neutrinos decay was unknown. In addition, the lower
bound to its half-life published by the Dama Collaboration [2] de-
manded a nearly complete cancellation of the nuclear matrix ele-
ment. After the EXO measure, we know that the matrix element
is small (indeed, the smallest among the measures ones) but not
pathologically so (see in Table 1 the present status of the 2ν de-
cays from the recent compilation of Ref. [3]). The EXO-200 measure
has been confirmed by KamLAND-Zen [4] only a few weeks ago.

The 2ν decay half-life contains a phase space factor and the
square of a nuclear matrix element
[
T2ν

1/2
]−1 = G2ν

∣∣M2ν
GT

∣∣2
. (1)

The nuclear structure information is contained in the nuclear
matrix element to which only the Gamow–Teller σ t± part con-
tributes in the long wavelength approximation

M2ν =
∑

m

⟨0+
f |σ⃗ t−|m⟩⟨m|σ⃗ t−|0+

i ⟩
Em − (Mi + M f )/2

. (2)

* Corresponding author.
E-mail address: alfredo.poves@uam.es (A. Poves).

Table 1
Experimental 2ν ββ decay matrix elements.

Decay M(2ν) (MeV−1) T2ν
1/2(y)

48Ca → 48Ti 0.047 ± 0.003 4.4 × 1019

76Ge → 76Se 0.140 ± 0.005 1.5 × 1021

82Se → 82Kr 0.098 ± 0.004 9.2 × 1019

96Zr → 96Mo 0.096 ± 0.004 2.3 × 1019

100Mo → 100Ru 0.246 ± 0.007 7.1 × 1018

116Cd → 116Sn 0.136 ± 0.005 2.8 × 1019

128Te → 128Xe 0.049 ± 0.006 1.9 × 1024

130Te → 130Xe 0.034 ± 0.003 6.8 × 1020

136Xe → 136Ba 0.019 ± 0.002 2.1 × 1021

150Nd → 150Sm 0.063 ± 0.003 8.2 × 1018

Therefore, to calculate the nuclear matrix element we need to
describe properly the ground state of the parent and grand daugh-
ter nuclei as well as all the 1+ excited states of the intermediate
odd–odd nucleus. In other words, the GT− strength function of
the parent, the GT+ strength function of the grand daughter and
the relative phases of the contributions from each intermediate
state.

Our description of the wave functions of the states involved
in the process is based in the Interacting Shell Model approach.
The valence space includes the orbits 0g7/2, 1d5/2, 1d3/2, 2s1/2, and
0h11/2, covering the sector of the nuclear chart between N,Z = 50
and N,Z = 82. We use the effective interaction gcn50:82 [5] which
is based in a renormalized G-matrix obtained from the Bonn-C [6]
potential using the methods of Ref. [7]. The final interaction is ob-
tained through a (mainly monopole) fit to about 300 energy levels
from ∼90 nuclei in the region with a rms deviation of 100 keV.
More details can be found in Ref. [8].

0370-2693/$ – see front matter © 2012 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.physletb.2012.03.076
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FIG. 11: (Color online) I decomposition: closure ap-
proximation Gamow-Teller and Fermi matrix elements
(both parities) for the 0⌫�� decay of 76Ge, light-neutrino
exchange. The calculation performed with the optimal
closure energy, hEi = 3.5 MeV. The results should be
compared with the matrix elements presented on Fig. 8.
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FIG. 12: (Color online) I decomposition: closure ap-
proximation Gamow-Teller and Fermi matrix elements
(both parities) for the 0⌫�� decay of 76Ge, heavy-
neutrino exchange.

TABLE II: Mixed and pure closure (last column) NMEs for
the 0⌫�� decay of 76Ge (light-neutrino exchange) calculated
with di↵erent SRC parametrizations schemes [21]. Closure
NMEs were calculated for a standard average closure energy
of hEi = 9.41 MeV [22].

SRC M0⌫
GT

M0⌫
F

M0⌫
T

M0⌫
total

M0⌫
closure

None 3.06 �0.63 �0.01 3.45 3.24

Miller-Spencer 2.45 �0.44 �0.01 2.72 2.55

CD-Bonn 3.15 �0.67 �0.01 3.57 3.35

AV18 2.98 �0.62 �0.01 3.37 3.15

values of the nonclosure NMEs compared to the closure
values. We conjecture that the optimal energies depend
on the e↵ective Hamiltonian and, possibly, on the model
space. We found the optimal closure energies for the
three Hamiltonians in the pf model space: GXPF1A [30],
FPD6 [31], and KB3G [32]. However, it seems that the
energies do not depend much on the specific nucleus: all
the calcium isotopes calculated with the same Hamilto-
nian and both the 76Ge and the 82Se isotopes calculated
with the same model space and with the same Hamil-
tonian give similar optimal closure energies. This opens
up an interesting opportunity: one could calculate the
optimal closure energy in a realistic model space with
an e↵ective Hamiltonian for a nearby less computation-
ally demanding isotope (for example, 44Ca), after which
one could use it for a realistic case (for example, 48Ca).
This scheme o↵ers a consistent way of “calculating” the
closure energies that has not been discussed before.

In the Table III we compare our results for the NMEs of
0⌫�� decay of 76Ge (light-neutrino exchange mechanism)
with the recent calculations. Table III presents matrix el-

ements obtained with: interacting shell model approach
(ISM) [33]; quasiparticle random phase approximation,
Tüebingen-Bratislava-Caltech group [(R)QRPA(TBC)]
[34, 35]; quasiparticle random phase approximation,
Jyväskylä group [QRPA(J)] [36]; quasiparticle random
phase approximation, Holt and Engel [37]; interacting
boson model (IBM-2) [13]; and generator coordinate
method (EDF) [14]. The value gA = 1.254 is used in
most of the calculations, except for IBM-2, which uses
the axial-vector coupling constant gA = 1.269 [38].

D. The heavy neutrino-exchange NME

Figure 10 and Table IV summarize the results for our
heavy-neutrino exchange 0⌫�� decay of 76Ge. Compar-
ing Figs. 7 and 10 we can see that the heavy neutrino-
exchange NMEs do not vanish with the large intermedi-
ate spins J . The heavy-neutrino potentials have a strong
short-range part, so the contributions from the large neu-
trino momentum, which are responsible for the higher
spin contributions, are not suppressed.
Finally we calculated I decompositions of the closure

NMEs, Eq. (9), for the 0⌫�� decay of 76Ge at the opti-
mal closure energy calculated specifically for 76Ge, for the
JUN45 e↵ective Hamiltonian and the jj44 model space,
hEi = 3.5 MeV. Figs. 11 and 12 present the matrix
elements calculated for the light-neutrino and heavy-
neutrino exchanges correspondingly. NMEs on these fig-
ures include both, positive and negative, and the Fermi
matrix elements were taken with the opposite sign and
multiplied by a factor of (gV /gA)2, so that the total hight
of each bar corresponds to the total matrix element (3)
(if the tensor matrix element is neglected). Comparing
Fig. 8 and Fig. 11 we can see a good agreement between
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