

Double-beta decay: to quench or not to quench

Mihai Horoi

Department of Physics, Central Michigan University, Mount Pleasant, Michigan 48859, USA

Support from NSF grant PHY-1404442 and DOE/SciDAC grants DE-SC0008529/SC0008641 is acknowledged

TRIUMF DBDW May 12, 2016

Classical Double Beta Decay Problem

Z+1

 0^{+}

2⁺

Z+2

TRIUMF DBDW May 12, 2016

The Nobel Prize in Physics 2015

Photo © Takaaki Kajita Takaaki Kajita Prize share: 1/2

Photo: K. McFarlane. Queen's University /SNOLAB

Arthur B. McDonald Prize share: 1/2

The Nobel Prize in Physics 2015 was awarded jointly to Takaaki Kajita and Arthur B. McDonald *"for the discovery of neutrino* TRIUMF DI oscillations, which shows that neutrinos have mass" 12, 2016

Neutrinoless Double Beta Decay

TRIUMF DBDW May 12, 2016

Neutrino $\beta\beta$ effective mass

arxiv:1507.08204

ŤĦ

CENTRAL MICHIGAN

$$\left\langle m_{\beta\beta} \right\rangle = \left| \sum_{k=1}^{5} m_{k} U_{ek}^{2} \right| = \left| c_{12}^{2} c_{13}^{2} m_{1} + c_{13}^{2} s_{12}^{2} m_{2} e^{i\phi_{2}} + s_{13}^{2} m_{3} e^{i\phi_{3}} \right| \qquad \Leftarrow T_{1/2}^{-1}(0v) = G^{0v}(Q_{\beta\beta}) \left[M^{0v}(0^{+}) \right]^{2} \left(\frac{\langle m_{\beta\beta} \rangle}{m_{e}} \right)^{2}$$

$$\phi_2 = \alpha_2 - \alpha_1 \qquad \phi_3 = -\alpha_1 - 2\delta$$

TRIUMF DBDW May 12, 2016

Neutrinoless Double Beta Decay Black Box

$$\left[T_{1/2}^{0\nu}\right]^{-1} = G^{0\nu} \left|\sum_{j} M_{j} \eta_{j}\right|^{2} = G^{0\nu} \left|M^{(0\nu)} \eta_{\nu L} + M^{(0N)} (\eta_{NL} + \eta_{NR}) + \tilde{X}_{\lambda} \right| < \lambda > + \tilde{X}_{\eta} < \eta > + M^{(0\lambda')} \eta_{\lambda'} + M^{(0\tilde{q})} \eta_{\tilde{q}} + \cdots \right|^{2}$$

TRIUMF DBDW May 12, 2016

Low-energy LR contributions to $0\nu\beta\beta$ decay

Low-energy effective Hamiltonian

$$\mathcal{H}_W = \frac{G_F}{\sqrt{2}} j_L^\mu J_{L\mu}^+ + h.c.$$

 $j_{L/R}^{\mu} = \overline{e} \gamma^{\mu} (1 \mp \gamma^5) v_e$

(b)

(d)

 $\mathcal{H}_{W} = \frac{G_{F}}{\sqrt{2}} \Big[j_{L}^{\mu} \Big(J_{L\mu}^{+} + \kappa J_{R\mu}^{+} \Big) + j_{R}^{\mu} \Big(\eta J_{L\mu}^{+} + \lambda J_{R\mu}^{+} \Big) \Big] + h.c.$ Left – right symmetric model

(e)

 $-\mathcal{L} \supset \frac{1}{2} h_{\alpha\beta}^{T} \left(\overline{v}_{\beta L} \ \overline{e}_{\alpha L} \right) \begin{pmatrix} \Delta^{-} & -\Delta^{0} \\ \Delta^{--} & \Delta^{-} \end{pmatrix} \begin{pmatrix} e_{R}^{c} \\ -v_{R}^{c} \end{pmatrix} + hc$

No neutrino exchange

(a)

(c)

More long-range contributions?

SUSY / w R – parity violation : e.g. Rep. Prog. Phys. 75, 106301(2012)

Hadronization /w R-parity v. and heavy neutrino

$$\left[T_{1/2}^{0\nu}\right]^{-1} = G^{0\nu} \left|\sum_{j} M_{j} \eta_{j}\right|^{2} = G^{0\nu} \left|M^{(0\nu)} \eta_{\nu L} + M^{(0N)} (\eta_{NL} + \eta_{NR}) + \tilde{X}_{\lambda} < \lambda > + \tilde{X}_{\eta} < \eta > + M^{(0\lambda')} \eta_{\lambda'} + M^{(0\tilde{q})} \eta_{\tilde{q}} + \cdots \right|^{2}$$

(i) η_{NL} negligible in most models; (ii) $\langle \eta \rangle \& \langle \lambda \rangle$ ruled in /out by energy or angular distributions

$$\left[T_{1/2}^{0\nu}\right]^{-1} \cong G^{0\nu} \left| M^{(0\nu)} \eta_{\nu L} + M^{(0N)} \eta_{NR} \right|^2 \approx G^{0\nu} \left[\left| M^{(0\nu)} \right|^2 \left| \eta_{\nu L} \right|^2 + \left| M^{(0N)} \right|^2 \left| \eta_{NR} \right|^2 \right]$$
 No interference terms!

TRIUMF DBDW May 12, 2016

$$r(\nu/N) = T_{1/2}^{\nu/N}(1)/T_{1/2}^{\nu/N}(2) = \frac{G_{01}^{0\nu}(2) \left| M^{0\nu/N}(2) \right|^2}{G_{01}^{0\nu}(1) \left| M^{0\nu/N}(1) \right|^2}$$

	Ge/Se		Ge/Te		Ge/Xe		Se/Te		Se/Xe		Te/Xe	
	Ge	Se	Ge	Те	Ge	Xe	Se	Те	Se	Xe	Те	Xe
$\overline{G_{01}^{0\nu} \times 10^{14}}$	0.237	1.018	0.237	1.425	0.237	1.462	1.018	1.425	1.018	1.462	1.425	1.462
$M^{0\nu}(1/2)$	3.57	3.39	3.57	1.93	3.57	1.76	3.39	1.93	3.39	1.76	1.93	1.76
$M^{0N}(1/2)$	202	187	202	136	202	143	187	136	187	143	136	143
$T_{1/2}^{\nu}(1)/T_{1/2}^{\nu}(2)$	3.	87	1.	76	1.	50	0.4	45	0.	39	0.8	85
$T_{1/2}^N(1)/T_{1/2}^N(2)$	3.	68	2.	73	3.	09	0.	74	0.	84	1.1	13
$R(N/\nu)$ present	$\left \begin{array}{c} 0. \end{array} \right $	95	1.	55	2.	06	1.	63	$\boxed{\qquad 2.}$	17	1.3	33
$\overline{R(N/\nu) \ [45]}$	1.	02	1.	39	1.4	42	1.	36	1.	39	1.()3

R(N / v) = r(N) / r(v)

TRIUMF DBDW May 12, 2016

 $p_{3/2}$

 $f_{7/2}$

TRIUMF DBDW May

12, 2016

0.02

0 <u>∟</u> 0

2

6

4

8

E_x (MeV)

10

12

14

G

Α_Y Z+2

Ϋ́Τ Z+1

 $E_0 = \frac{1}{2}Q_{\beta\beta} + \Delta M \left({}^A_{Z+1}T - {}^A_Z X \right)$

2v Double Beta Decay (DBD) of ⁴⁸Ca

$$T_{1/2}^{-1} = G^{2\nu}(Q_{\beta\beta}) \Big[M_{GT}^{2\nu}(0^{+}) \Big]^{2}$$

$$M_{GT}^{2\nu}(0^{+}) = \sum_{k} \frac{\langle 0_{f} \| \sigma \tau^{-} \| 1_{k}^{+} \rangle \langle 1_{k}^{+} \| \sigma \tau^{-} \| 0_{i} \rangle}{E_{k} + E_{0}}$$

$$\overset{48}{} Ca \xrightarrow{2\nu \beta\beta} \overset{48}{} Ti$$
The choice of valence space is important!?
$$B(GT) = \frac{\left| \langle f \| \sigma \cdot \tau \| i \rangle \right|^{2}}{(2J_{i} + 1)}$$

$$\overset{ISR}{=} \frac{48Ca}{f_{5/2}} \frac{48Ti}{f_{5/2}}$$

$$\overset{Ikeda satisfied in pf !}{=} \frac{P_{1/2}}{f_{5/2}}$$

$$\overset{012}{=} \frac{\int_{0}^{006}}{\int_{0}^{006}} \frac{1}{f_{5/2}} \frac{1}{f_{5/2}} \int_{0}^{006}}{\int_{0}^{006}} \frac{1}{f_{5/2}} \int_{0}^{006}}{\int_{0}^{006}} \frac{1}{f_{5/2}} \int_{0}^{006}} \frac{1}{f_{5/2}} \int_{0}^{006}}{\int_{0}^{006}} \frac{1}{f_{5/2}} \int_{0}^{006} \int_{0}^{006} \frac{1}{f_{5/2}} \int_{0}^{006}}{\int_{0}^{006}} \frac{1}{f_{5/2}} \int_{0}^{006} \int_{0}^{006} \frac{1}{f_{5/2}} \int_{0}^{0} \frac{1}{f_{5/2}} \int_{0$$

 $\rightarrow Z - 1) = 3(N - Z)$ $\rightarrow 0.74 g_A \sigma \tau$

Horoi, Stoica, Brown, PRC 75, 034303 (2007)

TRIUMF DBDW May 12, 2016

......

M(GT) USDB

M(GT) USDA

M(GT) USD

1

0

theory-fit

2

3

TRIUMF DBDW May 12, 2016

The g_A problem

PHYSICAL REVIEW C 87, 014315 (2013)

Phys. Lett. B 711, 62 (2012)

Table 2

The ISM predictions for the matrix element of several 2ν double beta decays (in MeV⁻¹). See text for the definitions of the valence spaces and interactions.

	$M^{2\nu}(exp)$	q	$M^{2\nu}(th)$	INT
48 Ca $\rightarrow ^{48}$ Ti	0.047 ± 0.003	0.74	0.047	kb3
48 Ca $\rightarrow ^{48}$ Ti	0.047 ± 0.003	0.74	0.048	kb3g
48 Ca $\rightarrow ^{48}$ Ti	0.047 ± 0.003	0.74	0.065	gxpf1
$^{76}\text{Ge} \rightarrow ^{76}\text{Se}$	0.140 ± 0.005	0.60	0.116	gcn28:50
$^{76}\text{Ge} \rightarrow ^{76}\text{Se}$	0.140 ± 0.005	0.60	0.120	jun45
$^{82}\text{Se} \rightarrow {}^{82}\text{Kr}$	0.098 ± 0.004	0.60	0.126	gcn28:50
82 Se $\rightarrow {}^{82}$ Kr	0.098 ± 0.004	0.60	0.124	jun45
$^{128}\text{Te} \rightarrow ^{128}\text{Xe}$	0.049 ± 0.006	0.57	0.059	gcn50:82
130 Te $\rightarrow ^{130}$ Xe	0.034 ± 0.003	0.57	0.043	gcn50:82
136 Xe $\rightarrow ^{136}$ Ba	0.019 ± 0.002	0.45	0.025	gcn50:82

FIG. 13. (Color online) Value of $g_{A,eff}$ extracted from experiment for IBM-2 and the ISM.

 $G^{2\nu}, G^{0\nu} \propto g_A^4$

The g_A problem

q_{exp}

Phys. Lett. B 711, 62 (2012)

Table 2

The ISM predictions for the matrix element of several 2ν double beta decays (in MeV⁻¹). See text for the definitions of the valence spaces and interactions.

	$M^{2\nu}(exp)$	q	$M^{2\nu}(th)$	INT
48 Ca $\rightarrow ^{48}$ Ti	0.047 ± 0.003	0.74	0.047	kb3
48 Ca $\rightarrow ^{48}$ Ti	0.047 ± 0.003	0.74	0.048	kb3g
48 Ca $\rightarrow ^{48}$ Ti	0.047 ± 0.003	0.74	0.065	gxpf1
$^{76}\text{Ge} \rightarrow ^{76}\text{Se}$	0.140 ± 0.005	0.60	0.116	gcn28:50
$^{76}\text{Ge} \rightarrow ^{76}\text{Se}$	0.140 ± 0.005	0.60	0.120	jun45
82 Se $\rightarrow {}^{82}$ Kr	0.098 ± 0.004	0.60	0.126	gcn28:50
82 Se $\rightarrow {}^{82}$ Kr	0.098 ± 0.004	0.60	0.124	jun45
128 Te $\rightarrow ^{128}$ Xe	0.049 ± 0.006	0.57	0.059	gcn50:82
130 Te $\rightarrow ^{130}$ Xe	0.034 ± 0.003	0.57	0.043	gcn50:82
136 Xe $\rightarrow ^{136}$ Ba	0.019 ± 0.002	0.45	0.025	gcn50:82

The g_A problem

q_{exp}

Physics Letters B 711 (2012) 62-64

Table 2

The ISM predictions for the matrix element of several 2ν double beta decays (in MeV⁻¹). See text for the definitions of the valence spaces and interactions.

	$M^{2\nu}(exp)$	q	$M^{2\nu}(th)$	INT
48 Ca $ ightarrow$ 48 Ti	0.047 ± 0.003	0.74	0.047	kb3
$^{48} ext{Ca} ightarrow ^{48} ext{Ti}$	0.047 ± 0.003	0.74	0.048	kb3g
48 Ca $\rightarrow ^{48}$ Ti	0.047 ± 0.003	0.74	0.065	gxpf1
$^{76}\text{Ge} \rightarrow ^{76}\text{Se}$	0.140 ± 0.005	0.60	0.116	gcn28:50
$^{76}\text{Ge} \rightarrow ^{76}\text{Se}$	0.140 ± 0.005	0.60	0.120	jun45
82 Se $\rightarrow {}^{82}$ Kr	0.098 ± 0.004	0.60	0.126	gcn28:50
82 Se $\rightarrow {}^{82}$ Kr	0.098 ± 0.004	0.60	0.124	jun45
128 Te $\rightarrow ^{128}$ Xe	0.049 ± 0.006	0.57	0.059	gcn50:82
$^{130}\text{Te} \rightarrow ^{130}\text{Xe}$	0.034 ± 0.003	0.57	0.043	gcn50:82
136 Xe $\rightarrow ^{136}$ Ba	0.019 ± 0.002	0.45	0.025	gcn50:82

TRIUMF DBDW May 12, 2016

CENTRAL MICHIGAN

Closure Approximation and Beyond in Shell Model

$$M_{S}^{0v} = \sum_{\substack{j, p < p' \\ n < n' \\ p < n}} (\Gamma) \left\langle \overline{0_{f}^{+} \left[\left(a_{p}^{+} a_{p'}^{+} \right)^{g} \left(\tilde{a}_{n}, \tilde{a}_{n} \right)^{g} \right]^{0}} \left| 0_{i}^{+} \right\rangle \left\langle p p'; \mathcal{I} \right| \int q^{2} dq \left[\hat{S} \frac{h(q) j_{\kappa}(qr) G_{FS}^{2} f_{SRC}^{2}}{q(q + \langle E \rangle)} \tau_{1-} \tau_{2-} \right] \left| n n'; \mathcal{I} \right\rangle - closure$$

$$M_{S}^{0v} = \sum_{\substack{pp' nn' \\ J & g'}} (\tilde{\Gamma}) \left\langle 0_{f}^{+} \left\| \left(a_{p}^{+} \tilde{a}_{n} \right)^{J} \right\| \mathcal{I}_{k} \right\rangle \left\langle \mathcal{I}_{k} \left\| \left(a_{p'}^{+} \tilde{a}_{n'} \right)^{J} \right\| 0_{i}^{+} \right\rangle \left\langle p p'; \mathcal{I} \right| \int q^{2} dq \left[\hat{S} \frac{h(q) j_{\kappa}(qr) G_{FS}^{2} f_{SRC}^{2}}{q(q + \langle E \rangle)} \tau_{1-} \tau_{2-} \right] \left| n n'; \mathcal{I} \right\rangle - beyond$$

Challenge: there are about 100,000 J_k states in the sum for 48Ca

Much more intermediate states for heavier nuclei, such as ⁷⁶Ge!!!

 $M^{0\nu} = M_{GT}^{0\nu} - (g_V / g_A)^2 M_F^{0\nu} + M_T^{0\nu}$ $\hat{S} = \begin{cases} \sigma_1 \tau_1 \sigma_2 \tau_2 & Gamow - Teller (GT) \\ \tau_1 \tau_2 & Fermi (F) \\ [3(\vec{\sigma}_1 \cdot \hat{n})(\vec{\sigma}_2 \cdot \hat{n}) - (\vec{\sigma}_1 \cdot \vec{\sigma}_2)] \tau_1 \tau_2 & Tensor (T) \\ TRIUMF DBDW May \\ 12, 2016 \end{cases}$

No-closure may need states out of the model space (not considered).

Minimal model spaces

- 82 Se : 10M states
- ¹³⁰Te : 22M states
- ⁷⁶Ge: 150M states

CENTRAL MICHIGAN

QRPA-Jy J. Suhonen, O. Civitarese, Phys. NPA 847 207–232 (2010).

QRPA-Tu A. Faessler, M. Gonzalez, S. Kovalenko, and F. Simkovic, arXiv:1408.6077

ISM-Men J. Menéndez, A. Poves, E. Caurier, F. Nowacki, NPA 818 139–151 (2009).

SM M. Horoi et. al. PRC 88, 064312 (2013), PRC 89, 045502 (2014), PRC 89, 054304 (2014), PRC 90, 051301(R) (2014), PRC

M. Horoi CMU

91, 024309 (2015), PRL **110**, 222502 (2013), PRL **113**, 262501(2014).

TRIUMF DBDW May 12, 2016

IBA-2 J. Barea, J. Kotila, and F. Iachello, Phys. Rev. C 87, 014315 (2013).

QRPA-Tu A. Faessler, M. Gonzalez, S. Kovalenko, and F. Simkovic, arXiv:1408.6077.

QRPA-Jy J. Hivarynen and J. Suhonen, PRC 91, 024613 (2015), ISM-StMa J. Menendez, private communication.

ISM-CMU M. Horoi et. al. PRC 88, 064312 (2013), PRC 90, PRC 89, 054304 (2014), PRC 91, 024309 (2015), PRL 110, 222502 (2013).

TRIUMF DBDW May 12, 2016

The effect of larger model spaces for ⁴⁸Ca

See also PRL 116, 112502 (2016)

M(0v)	SDPFU	SDPFMUP
0 ħω	0.941	(0.623)
$0+2\hbar\omega$	1.182 (26%)	1.004 (61%)

SDPFU: PRC 79, 014310 (2009)

SDPFMUP: PRC 86, 051301(R) (2012)

	M(0v)
$0 \hbar \omega / \text{GXPF1A}$	0.733
$0 \hbar \omega + 2^{nd}$ ord./GXPF1A	1.301 (77%)

arXiv:1308.3815, PRC 89, 045502 (2014)

PRC 87, 064315 (2013)

Towards an effective 0vDBD operator

SRG evolution

 $H_{\lambda} = U_{\lambda} H_{\lambda = \infty} U_{\lambda}^{\dagger}$

$$rac{dH_\lambda}{d\lambda} = -rac{4}{\lambda^5}[[G,H_\lambda],H_\lambda]$$

$$O_{\lambda} = U_{\lambda}O_{\lambda=\infty}U_{\lambda}^{+}$$

N3LO 500

arXiv:1302.5473

TRIUMF DBDW May 12, 2016

CENTRAL MICHIGAN Towards an effective 0vDBD operator: heavy neutrino-exchange NME

$$O_{\lambda} = U_{\lambda}O_{\lambda=\infty}U_{\lambda}^{+}$$

TRIUMF DBDW May 12, 2016

M. Horoi CMU

 76 Ge

懗 CENTRAL MICHIGAN Towards an effective 0vDBD operator: heavy neutrino-exchange NME

$$O_{\lambda} = U_{\lambda}O_{\lambda=\infty}U_{\lambda}^{+}$$

TRIUMF DBDW May 12, 2016

CENTRAL MICHIGAN Towards an effective 0vDBD operator: light neutrino-exchange NME

SciDAC Scientific Discovery Minister Consultation

TRIUMF DBDW May 12, 2016

Observation of $0\nu\beta\beta$ will signal New Physics Beyond the Standard Model.

Black box theorem (all flavors + oscillations)

(i) Neutrinos are Majorana fermions.

 $0\nu\beta\beta$ observed \Leftrightarrow at some level

(ii) Lepton number conservation is violated by 2 units

$$(iii) \ \left\langle m_{\beta\beta} \right\rangle = \left| \sum_{k=1}^{3} m_{k} U_{ek}^{2} \right| = \left| c_{12}^{2} c_{13}^{2} m_{1} + c_{13}^{2} s_{12}^{2} m_{2} e^{i\phi_{2}} + s_{13}^{2} m_{3} e^{i\phi_{3}} \right| > 0$$

Regardless of the dominant $0\nu\beta\beta$ mechanism!

TRIUMF DBDW May 12, 2016

Collaborators:

- Alex Brown, NSCL@MSU
- Roman Senkov, CUNY
- Andrei Neacsu, CMU
- Jonathan Engel, UNC
- Jason Holt, TRIUMF
- Petr Navratil, TRIUMF
- Sofia Quaglioni, LLNL
- Micah Schuster, ORNL

