

Canada's national laboratory for particle and nuclear physics Laboratoire national canadien pour la recherche en physique nucleaire et en physique des particules

Ab initio effective interactions and operators from IM-SRG

Ragnar Stroberg TRIUMF Double Beta Decay Workshop

 $\tfrac{dH}{ds} = [\eta, H]$

 $U\mathcal{O}U^{\dagger} = \mathcal{O} + [\eta, \mathcal{O}] + \dots$

Valence space IM-SRG

Outline

- Conceptual introduction to valence space IM-SRG
- Targeted normal ordering
- Ensemble reference states
- Effective valence space operators

Introduction

Starting point: non-relativistic Schrödinger equation with nucleons as our degrees of freedom.

- Effective theory $\rightarrow H$ is scheme and scale dependent.
- Strongly-interacting system \rightarrow highly correlated \rightarrow hard to solve.

The underlying physical laws necessary for the mathematical theory of a large part of physics and the whole of chemistry are thus completely known, and the difficulty is only that the exact application of these laws leads to equations much too complicated to be soluble. —Paul Dirac, 1929

Many-body approaches

Microscopic

- NCSM, GFMC, etc
- Use realistic H, solve directly
- Works well for light systems
- Operators treated consistently
- Basis dimension grows rapidly

Phenomenological

- SM, RPA, IBM, DFT, etc.
- Make the problem tractable
- $\bullet \ \ {\sf Missing \ physics} \to {\sf adjust} \ {\sf H}$
- Much larger reach in A
- How to adjust other operators?

Many-body approaches

Microscopic

- NCSM, GFMC, etc
- Use realistic H, solve directly
- Works well for light systems
- Operators treated consistently
- Basis dimension grows rapidly

Phenomenological

- SM, RPA, IBM, DFT, etc.
- Make the problem tractable
- $\bullet \ \ {\sf Missing \ physics} \to {\sf adjust} \ {\sf H}$
- Much larger reach in A
- How to adjust other operators?

Microscopic/Effective

- Lee-Suzuki, MBPT, IM-SRG
- Systematically treat missing physics
- Consistently transform other operators
- Does the expansion converge?

Effective Interaction

$\langle P H P angle$	$\langle P H Q\rangle \to 0$
$\langle Q H P angle ightarrow 0$	$\langle Q H Q angle$

•
$$\tilde{H} = UHU^{\dagger}$$

•
$$\langle P|\tilde{H}|Q\rangle = \langle Q|\tilde{H}|P\rangle = 0$$

•
$$\langle \tilde{\Psi}_i | \hat{P} \hat{H} \hat{P} | \tilde{\Psi}_i \rangle = \langle \Psi_i | H | \Psi_i \rangle$$

- U may always be written as $U=e^\eta,$ for some generator η
- For two-level system, $\eta = \begin{pmatrix} 0 & \theta \\ -\theta & 0 \end{pmatrix}$
- For our Hamiltonian, take $\eta = \frac{1}{2} \operatorname{atan} \left(\frac{2H_{od}}{\Delta} \right) h.c.$

- Perform multiple rotations: $U_N = e^{\eta_N} \dots e^{\eta_2} e^{\eta_1}$
- Iterate until $\eta_N = 0$
- Infinitessimal rotation of angle $ds \rightarrow \frac{dH(s)}{ds} = [\eta(s), H(s)]$

White 2002; Tsukiyama, Bogner, and Schwenk 2011; Morris, Parzuchowski, and Bogner 2015

- Why "In-Medium"?
 - \Rightarrow To deal with the problem of induced many-body forces

- All terms beyond two-body operators are too expensive to handle
- Define states with respect to a reference $|\Phi_0
 angle$ (Normal Ordering)
- If $|\Phi_0\rangle$ is a reasonable approximation of $|\Psi\rangle,$ then many-body terms are less important

Valence space IM-SRG

- Excluded configurations treated with IM-SRG (definition of H_{od})
- Valence configurations treated explicitly with standard shell model diagonalization
- In following, all calculations use SRG evolved E&M N^3LO NN + local N^2LO 3N (kindly provided by Angelo Calci)

Entem and Machleidt 2003; Navrátil 2007; Tsukiyama, Bogner, and Schwenk 2012

Bogner et al. 2014

Ragnar Stroberg (TRIUMF)

Bogner et al. 2014; Cipollone, Barbieri, and Navrátil 2013; Hergert et al. 2014

Valence space IM-SRG

- The other methods use the target nucleus as $|\Phi_0\rangle,$ while we use the core
- Other methods better capture effect 3N forces between valence nucleons

- As valence neutrons are added, $|^{22}O\rangle$ becomes a better reference than $|^{16}O\rangle,$ so use that
- But still decouple the $\underline{full \ sd \ shell}$

Bogner et al. 2014; Brown et al. 2006; Cipollone, Barbieri, and Navrátil 2013; Hergert et al. 2014

Valence space IM-SRG

Bogner et al. 2014; Brown et al. 2006; Cipollone, Barbieri, and Navrátil 2013; Hergert et al. 2014

Valence space IM-SRG

Valence space IM-SRG: Closed subshells

Valence space IM-SRG: Ground state of ²⁸Si

Aside: Basis dependence of occupation numbers

$$a_i^{\dagger}a_i = Ua_i^{\prime\dagger}a_i^{\prime}U^{\dagger}$$

Occupations:				
1) IM-SRG basis				
2) Oscillator basis				
	1	2		
$0s_{1/2}$	2.0	1.96		
$0p_{3/2}$	4.0	3.87		
$0p_{1/2}$	2.0	1.93		
$0d_{5/2}$	6.0	4.68		
$1s_{1/2}$	0.0	0.57		
$0d_{2/2}$	0.0	0.57		

Same calculation, different occupations!

. . .

. . .

Ragnar Stroberg (TRIUMF)

RTRIUMF

What to do about ^{22}Na ?

Replace $|\Phi_0\rangle$ with ensemble (mixed) state characterized by density matrix:

$$\rho = \sum_{i} \alpha_{i} |\Phi_{i}\rangle \langle \Phi_{i}|$$

Definition of normal ordering:

$$Tr(\rho\{a_1^{\dagger}\dots a_N\}) = \sum_i \alpha_i \langle \Phi_i | \{a_1^{\dagger}\dots a_N\} | \Phi_i \rangle = 0$$

Wick contraction:

$$\{\bar{a}_p^{\dagger}\bar{a}_q\} = \sum_i \alpha_i \langle \Phi_i | a_p^{\dagger} a_q | \Phi_i \rangle \equiv n_p \delta_{pq}$$

$$\{a_p^{\dagger\dagger}a_q\} = n_p \delta_{pq} \quad , \quad \{a_p^{\dagger}a_q^{\dagger}\} = (1 - n_p)\delta_{pq} \quad , \quad \{a_p^{\dagger}a_q\} = \{a_p^{\dagger}a_q^{\dagger}\} = 0$$

Now n_p can be fractional, which is exactly what we want!

Thouless 1957; Gaudin 1960; Perez-Martin and Robledo 2008

Replace $|\Phi_0\rangle$ with ensemble (mixed) state characterized by density matrix:

$$\rho = \sum_{i} \alpha_{i} |\Phi_{i}\rangle \langle \Phi_{i}|$$

Definition of normal ordering:

$$Tr(\rho\{a_1^{\dagger}\dots a_N\}) = \sum_i \alpha_i \langle \Phi_i | \{a_1^{\dagger}\dots a_N\} | \Phi_i \rangle = 0$$

Wick contraction:

$$\{a_p^{\dagger\dagger}a_q\} = \sum_i \alpha_i \langle \Phi_i | a_p^{\dagger}a_q | \Phi_i \rangle \equiv n_p \delta_{pq}$$

$$\{a_p^{\dagger}a_q\} = n_p \delta_{pq} \quad , \quad \{a_p^{\dagger}a_q^{\dagger}\} = (1 - n_p)\delta_{pq} \quad , \quad \{a_p^{\dagger}a_q\} = \{a_p^{\dagger}a_q^{\dagger}\} = 0$$

Now n_p can be fractional, which is exactly what we want!

Thouless 1957; Gaudin 1960; Perez-Martin and Robledo 2008

Replace $|\Phi_0\rangle$ with ensemble (mixed) state characterized by density matrix:

$$\rho = \sum_{i} \alpha_i |\Phi_i\rangle \langle \Phi_i|$$

Definition of normal ordering:

$$Tr(\rho\{a_1^{\dagger}\dots a_N\}) = \sum_i \alpha_i \langle \Phi_i | \{a_1^{\dagger}\dots a_N\} | \Phi_i \rangle = 0$$

Wick contraction:

$$\{\overline{a_p^{\dagger}}a_q\} = \sum_i \alpha_i \langle \Phi_i | a_p^{\dagger}a_q | \Phi_i \rangle \equiv n_p \delta_{pq}$$

 $\{a_p^{\dagger}a_q\} = n_p\delta_{pq} \quad , \quad \{a_p^{\dagger}a_q^{\dagger}\} = (1 - n_p)\delta_{pq} \quad , \quad \{a_p^{\dagger}a_q\} = \{a_p^{\dagger}a_q^{\dagger}\} = 0$

Now n_p can be fractional, which is exactly what we want!

Thouless 1957; Gaudin 1960; Perez-Martin and Robledo 2008

Replace $|\Phi_0\rangle$ with ensemble (mixed) state characterized by density matrix:

$$\rho = \sum_{i} \alpha_{i} |\Phi_{i}\rangle \langle \Phi_{i}|$$

Definition of normal ordering:

$$Tr(\rho\{a_1^{\dagger}\dots a_N\}) = \sum_i \alpha_i \langle \Phi_i | \{a_1^{\dagger}\dots a_N\} | \Phi_i \rangle = 0$$

Wick contraction:

$$\{a_p^{\dagger}a_q\} = \sum_i \alpha_i \langle \Phi_i | a_p^{\dagger}a_q | \Phi_i \rangle \equiv n_p \delta_{pq}$$
$$\{a_p^{\dagger}a_q\} = n_p \delta_{pq} \quad , \quad \{a_p^{\dagger}a_q^{\dagger}\} = (1 - n_p)\delta_{pq} \quad , \quad \{a_p^{\dagger}a_q\} = \{a_p^{\dagger}a_q^{\dagger}\} = 0$$

Now n_p can be fractional, which is exactly what we want!

Thouless 1957; Gaudin 1960; Perez-Martin and Robledo 2008

OTRIUMF

Valence 3N forces: 10 B, 22 Na, 46 V

- $\bullet~{\rm Ground}$ state of $^{10}{\rm B}$ is 3^+
- 3N forces are required to reproduce this without fitting

Navrátil and Ormand 2002; Pieper, Varga, and Wiringa 2002; Gebrerufael, Calci, and Roth 2015

CTRIUMF

Valence 3N forces: ${}^{10}B$, ${}^{22}Na$, ${}^{46}V$

- $\bullet~{\rm Ground}$ state of $^{10}{\rm B}$ is 3^+
- 3N forces are required to reproduce this without fitting
- $\bullet\,$ Similar situation for $^{22}{\rm Na}$ and $^{46}{\rm V}$
- Normal ordering with ensemble reference captures this
- First ab initio calculations of ²²Na and ⁴⁶V to obtain correct ordering

Navrátil and Ormand 2002; Pieper, Varga, and \

Cipollone, Barbieri, and Navrátil 2013; Binder et al. 2014; Hergert et al. 2014; Jansen et al. 2015; Roth(priv. comm.)

Ragnar Stroberg (TRIUMF)

Valence space IM-SRG

May 13, 2016 19 / 2

Cipollone, Barbieri, and Navrátil 2013; Binder et al. 2014; Hergert et al. 2014; Jansen et al. 2015; Roth(priv. comm.)

Ragnar Stroberg (TRIUMF)

Valence space IM-SRG

Cipollone, Barbieri, and Navrátil 2013; Binder et al. 2014; Hergert et al. 2014; Jansen et al. 2015; Roth(priv. comm.)

Ragnar Stroberg (TRIUMF)

Valence space IM-SRG

May 13, 2016 19 / 2

Cipollone, Barbieri, and Navrátil 2013; Binder et al. 2014; Hergert et al. 2014; Jansen et al. 2015; Roth(priv. comm.)

Ragnar Stroberg (TRIUMF)

Valence space IM-SRG

May 13, 2016 19 / 2

Germanium/Selenium 0^+ states

Effective operators

Some very preliminary results

• Operators transform just like H:

$$\tilde{\mathcal{O}} = e^{\Omega} \mathcal{O} e^{-\Omega} = \mathcal{O} + [\Omega, \mathcal{O}] + \frac{1}{2} [\Omega, [\Omega, \mathcal{O}]] + \dots$$

• Tensor operators require additional angular momentum coupling:

$$\tilde{\mathcal{O}}^{\lambda} = e^{\Omega} \mathcal{O}^{\lambda} e^{-\Omega} = \mathcal{O}^{\lambda} + [\Omega, \mathcal{O}^{\lambda}]^{\lambda} + \frac{1}{2} [\Omega, [\Omega, \mathcal{O}^{\lambda}]^{\lambda}]^{\lambda} + \dots$$

• Shell model expectation values then reflect full-space expectation values:

$$\langle \Psi | \mathcal{O} | \Psi \rangle = \langle \Psi_{SM} | \tilde{\mathcal{O}} | \Psi_{SM} \rangle$$

The deuteron

- Valence space: 0s shell
- No effects of induced many-body forces
- Bare quadrupole operator $(\lambda = 2)$ gives identically zero

The deuteron

- Energy correctly reproduced
- $\langle 0s_{1/2}0s_{1/2}|\tilde{Q}|0s_{1/2}0s_{1/2}\rangle \neq 0$

Into the *sd* shell: Neon Radii

Marinova et al. 2011; Brown 1998

Ragnar Stroberg (TRIUMF)

Summary

- Ab initio methods provide a means to calculate matrix elements where fitting to data is not possible
- Effective valence-space approach enables consistent treatment of excited states, transitions, open-shell/deformed systems
- Targeted normal ordering with an ensemble reference provides a reasonable approximation of valence 3N forces
- Evolved tensor operators produce some renormalization more work to be done.
- MEC corrections to operators can be handled without additional trouble

Collaborators:

Regrer Stroberg (TRIUMF) A. Calci, J. Holt, P. Navrátil A. Calci, J. Holt, P. Navrátil Image: Stroberg Stroberg (TRIUMF) A. Schwenk, J. Simonis Regrer Stroberg (TRIUMF)

Appendix

How to choose $\hat{\Omega}$?

A toy problem:

$$\hat{H} = \begin{pmatrix} \epsilon_1 & h_{od} \\ h_{od} & \epsilon_2 \end{pmatrix}, \quad \hat{\Omega} = \begin{pmatrix} 0 & \theta \\ -\theta & 0 \end{pmatrix}, \quad e^{\hat{\Omega}} = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix}$$

$$e^{\hat{\Omega}}\hat{H}e^{-\hat{\Omega}} = \begin{pmatrix} \epsilon_1\cos^2\theta + \epsilon_2\sin^2\theta + h\sin 2\theta & h_{od}\cos 2\theta + \frac{\epsilon_2-\epsilon_1}{2}\sin 2\theta \\ h_{od}\cos 2\theta + \frac{\epsilon_2-\epsilon_1}{2}\sin 2\theta & \epsilon_2\cos^2\theta + \epsilon_1\sin^2\theta - h\sin 2\theta \end{pmatrix}$$

$$h'_{od} \to 0 \quad \Rightarrow \quad \theta = \frac{1}{2} \tan^{-1} \left(\frac{2h_{od}}{\epsilon_1 - \epsilon_2} \right)$$

 $\theta \ll 1 \quad \Rightarrow \quad \theta \approx \frac{h_{od}}{\epsilon_1 - \epsilon_2}$

Ragnar Stroberg (TRIUMF)

A Milita L Chara Dhua 117, 7472 (2002) May 13, 2016 31 / 3

Application to 16 O:

$$\bullet |\Phi_0\rangle = \underbrace{\bullet}_{\mu}$$

•
$$\eta \sim \frac{H_{od}}{\Delta} - h.c.$$

- H_{od} is any term that connects $|\Phi_0\rangle$ to any other configuration
- s is the total "angle" rotated
- Ground state energy given by a single matrix element: $\langle \Phi_0 | \tilde{H} | \Phi_0 \rangle$

Tsukiyama, Bogner, and Schwenk 2011; Ekström et al. 2015

Where did all the correlations go?

- Original single particle basis: $|\phi_i\rangle = a_i^{\dagger}|0\rangle$
- The transformed \tilde{H} is implicitly in terms of \tilde{a}_i^{\dagger}

$$\tilde{a}_i^{\dagger} = U^{\dagger}(a_i^{\dagger})U$$

= $C_i a_i^{\dagger} + \sum_{j \neq i} C_j a_j^{\dagger} + \sum_{jk} C_{jkl} a_j^{\dagger} a_k^{\dagger} a_l + \dots$

• The single-particle orbits are now much more complicated!

$$\rightarrow$$
 \overrightarrow{U} \rightarrow

References I

- Binder, Sven et al. (2014). "Ab initio path to heavy nuclei". In: Phys. Lett. B 736, pp. 119–123. ISSN: 03702693. DOI: 10.1016/j.physletb.2014.07.010. URL: http://www.sciencedirect.com/science/article/pii/S0370269314004961.
- Bogner, S. K. et al. (2014). "Nonperturbative shell-model interactions from the in-medium similarity renormalization group". In: Phys. Rev. Lett. 113.14, p. 142501. ISSN: 0031-9007. DOI: 10.1103/PhysRevLett.113.142501. arXiv: 1402.1407. URL: http://link.aps.org/doi/10.1103/PhysRevLett.113.142501.
- Brown, B. A. (1998). "New Skyrme interaction for normal and exotic nuclei". In: Phys. Rev. C 58.1, pp. 220–231. ISSN: 0556-2813. DOI: 10.1103/PhysRevC.58.220. URL: http://link.aps.org/doi/10.1103/PhysRevC.58.220.
- Brown, B. A. et al. (2006). "Tensor interaction contributions to single-particle energies". In: Phys. Rev. C 74.6, p. 061303. ISSN: 0556-2813. DOI: 10.1103/PhysRevC.74.061303. URL: http://link.aps.org/doi/10.1103/PhysRevC.74.061303.
- Cipollone, A., C. Barbieri, and P. Navrátil (2013). "Isotopic Chains Around Oxygen from Evolved Chiral Two- and Three-Nucleon Interactions". In: Phys. Rev. Lett. 111.6, p. 062501. ISSN: 0031-9007. DOI: 10.1103/PhysRevLett.111.062501. URL: http://link.aps.org/doi/10.1103/PhysRevLett.111.062501.
- Ekström, A. et al. (2015). "Accurate nuclear radii and binding energies from a chiral interaction". In: Phys. Rev. C 91.5, p. 051301. ISSN: 0556-2813. DOI: 10.1103/PhysRevC.91.051301. URL: http://link.aps.org/doi/10.1103/PhysRevC.91.051301.
- Entem, D. R. and R. Machleidt (2003). "Accurate charge-dependent nucleon-nucleon potential at fourth order of chiral perturbation theory". In: Phys. Rev. C 68.4, p. 041001. ISSN: 0556-2813. DOI: 10.1103/PhysRevC.68.041001. URL: http://link.aps.org/doi/10.1103/PhysRevC.68.041001.

References II

- Gaudin, Michel (1960). "Une démonstration simplifiée du théorème de wick en mécanique statistique". In: Nucl. Phys. 15, pp. 89-91. ISSN: 00295582. DOI: 10.1016/0029-5582(60)90285-6. URL: http://www.sciencedirect.com/science/article/pii/0029558260902856.
- Gebrerufael, Eskendr, Angelo Calci, and Robert Roth (2015). "Open-Shell Nuclei and Excited States from Multi-Reference Normal-Ordered Hamiltonians". In: p. 6. arXiv: 1511.01857. URL: http://arxiv.org/abs/1511.01857.
- Hergert, H. et al. (2014). "Ab initio multireference in-medium similarity renormalization group calculations of even calcium and nickel isotopes". In: Phys. Rev. C 90.4, p. 041302. ISSN: 0556-2813. DOI: 10.1103/PhysRevC.90.041302. URL: http://link.aps.org/doi/10.1103/PhysRevC.90.041302.
- Jansen, G. R. et al. (2015). "Deformed sd-shell nuclei from first principles". In: arXiv: 1511.00757. URL: http://arxiv.org/abs/1511.00757.
- Marinova, K. et al. (2011). "Charge radii of neon isotopes across the s d neutron shell". In: Phys. Rev. C 84.3, p. 034313. ISSN: 0556-2813. DOI: 10.1103/PhysRevC.84.034313. URL: http://link.aps.org/doi/10.1103/PhysRevC.84.034313.
- Morris, T. D., N. M. Parzuchowski, and S. K. Bogner (2015). "Magnus expansion and in-medium similarity renormalization group". In: Phys. Rev. C 92.3, p. 034331. ISSN: 0556-2813. DOI: 10.1103/PhysRevC.92.034331. arXiv: 1507.06725. URL: http://journals.aps.org.ezproxy.library.ubc.ca/prc/abstract/10.1103/PhysRevC.92.034331.
- Navrátil, P. (2007). "Local three-nucleon interaction from chiral effective field theory". In: Few-Body Syst. 41.3-4, pp. 117–140. ISSN: 0177-7963. DOI: 10.1007/s00601-007-0193-3. URL: http://link.springer.com/10.1007/s00601-007-0193-3.
- Navrátil, Petr and W Erich Ormand (2002). "Ab initio shell model calculations with three-body effective interactions for p-shell nuclei." In: Phys. Rev. Lett. 88.15, p. 152502. ISSN: 0031-9007. DOI: 10.1103/PhysRevLett.88.152502. URL: http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.88.152502.

References III

- Perez-Martin, Sara and L. M. Robledo (2008). "Microscopic justification of the equal filling approximation". In: Phys. Rev. C 78.1, p. 014304. ISSN: 0556-2813. DOI: 10.1103/PhysRevC.78.014304. URL: http://journals.aps.org/prc/abstract/10.1103/PhysRevC.78.014304.
- Pieper, S., K. Varga, and R. Wiringa (2002). "Quantum Monte Carlo calculations of A=9,10 nuclei". In: Phys. Rev. C 66.4, p. 044310. ISSN: 0556-2813. DOI: 10.1103/PhysRevC.66.044310. URL: http://link.aps.org/doi/10.1103/PhysRevC.66.044310.
- Thouless, D. J. (1957). "Use of Field Theory Techniques in Quantum Statistical Mechanics". In: Phys. Rev. 107.4, pp. 1162–1163. ISSN: 0031-899X. DOI: 10.1103/PhysRev.107.1162. URL: http://journals.aps.org/pr/abstract/10.1103/PhysRev.107.1162.
- Tsukiyama, K., S. K. Bogner, and A. Schwenk (2011). "In-Medium Similarity Renormalization Group For Nuclei". In: Phys. Rev. Lett. 106.22, p. 222502. ISSN: 0031-9007. DOI: 10.1103/PhysRevLett.106.222502. URL: http://link.aps.org/doi/10.1103/PhysRevLett.106.222502.
- (2012). "In-medium similarity renormalization group for open-shell nuclei". In: Phys. Rev. C 85.6, p. 061304. ISSN: 0556-2813. DOI: 10.1103/PhysRevC.85.061304. URL: http://link.aps.org/doi/10.1103/PhysRevC.85.061304.
- White, Steven R. (2002). "Numerical canonical transformation approach to quantum many-body problems". In: J. Chem. Phys. 117.16, p. 7472. ISSN: 00219606. DOI: 10.1063/1.1508370. URL: http://scitation.aip.org.proxy2.cl.msu.edu/content/aip/journal/jcp/117/16/10.1063/1.1508370.